Optimizing Parallel Programming with MPI, Computer Systems
Lab, 2007-2008

Michael Chen

June 7, 2008

Abstract

With more and more computationally-intense prob-
lems appearing through the fields of math, science,
and technology, a need for better processing power
is needed in computers. The solution can be found
through parallel processing, the act of linking to-
gether multiple computers and cutting run-time by
using all of them efficiently. MPI (Message Passing
Interface) is one of the most crucial and effective ways
of programming in parallel, despite its difficulty to
use at times. However, there has been no effective
alternate to this date, and continues as the de facto
standard of parallel programming. But technology
has been advancing, and new MPI libraries have been
created to keep up with the capabilities of supercom-
puters. Efficiency has become the new keyword in
finding the number of computers to use, as well as
the latency when passing messages. The purpose of
this project is to explore some of these methods of
optimization in specific cases like the game of life.
Keywords: Message passing interface, latency

1 Introduction

Because of the increasing demand for powerful com-
putations, MPI has become a standard for even com-
panies like IBM, which recently began using their
BG/L supercomputer along with an MPI library to
tackle problems like protein folding. Because of this,
efficiency in parallel programming has become a high
priority, finding what yields the best latency, and
what type of processors can best suit each prob-

lem. For example, IBM tried using coprocessor mode
(both processors calculate the problem), as well as
virtual node (one processor receives and sends data,
while the other is calculation intensive).

Parallel programming is a field that will have much
use in the future. As a programmer, it is important
to reach into bodies of knowledge that will become
important in time, and that includes a thorough un-
derstanding of MPI.

Many hopes for the future lie in this field. Molec-
ular biology, strong artificial intelligence, and ecosys-
tem simulations are just a few of the multitude of
applications which will surely require parallel com-
puting. Though my plans only include optimization
of the game of life problem, it is these basic skills
that carry over into real-world applications, except
on a much larger scale. The processes of automated
testing are becoming increasingly popular, and the
results that my project should yield as a result hope-
fully will point to possible relationships between la-
tency, computation power, as well as the optimum
number of processors to use.

2 Background and review of
current literature and re-
search

Parallel programming is the concept that multiple
processors can be used to split up a task and then
combine the separate parts to enhance processing
speed. With advancements in many fields requir-
ing computation-intensive calculations, parallel pro-

gramming has become increasingly popular. This has
been explained in many books such as Introduction
to Parallel Programming as well as Parallel Program-
ming in MPI. In specific, the type of parallel program-
ming being used in this project is message passing,
having computers send and receive data from each
other to complete programs. The first message pass-
ing interface was released in 1994 for Fortran. 14
years later, though it retains much of its old func-
tions, MPI-2 has become a new standard, focusing
more on parallel I/0, dynamic process management
and remote memory operations.

Project ideas that have been explored include tak-
ing images taken from aircraft and placing them on
a map in terms of longitude and latitude, as well as
symbolic computations for recognizing speech and fa-
cial features. The complexity of algorithms and func-
tions ranges greatly and often depends on the effi-
ciency of the code. For example, though master-slave
message passing is probably the easiest to code, it
runs much slower than the divide and conquer strat-
egy. (Figure 1) Whereas the first only has messages
passing between the main computer and slave com-
puters, divide and conquer has each processor com-
municating with any other processor it needs infor-
mation from. But these are still just the basics. As
stated above, companies like IBM are actively search-
ing for new methods to tackle their problems, using
collective and torus networks (that allow quick com-
munication in the least number of steps), and dif-
ferent modes with which to use dual processors. But
because individual computers each have their own la-
tency, the question of how many computers to use as
well as how often and how much to communicate be-
come key issues, ones that I address and attempt to
solve in this project.

Also, a quick overview of the game of life, the ba-
sic simulation I am using to test effiency. It begins
with a board with a certain number of cells, with
each one either alive (1), or dead (0). It is a very
basic simulation of social interaction, since whether
or not each cell lives or dies depends on the status
of the cells around it in all eight directions. If 4 cells
around it are alive, then it dies from overcrowding. If
less than 2 cells are around it, it dies from overcrowd-
ing. It lives if 2 or 3 cells are alive, and if the cell is

currently dead, it comes back to life (reproduction)
when there are 3 cells as neighbors. Running this re-
peatedly leads to a series of interaction between cells
that can cause eventual patterns to form (squares and
crosses survive).

3 Development

3.1 Requirements and Limitations,
Overview, Development plan

The project will be deemed successful under a few
conditions. At the beginning of the year and up till
now, it has been to tackle problems and programs
involving MPI, like the wind velocity lab from first
quarter, and Mandelbrot and game of life from sec-
ond quarter. However, from third quarter on, the
focus shifted from implementation to optimization. I
chose the game of life program because it has vari-
ables that are easily manipulated through cell by cell
computation. By having a simple scheme to test, I
can find out exactly how much latency and number
or processors plays a role in run time.

The technology demand of MPI will be no prob-
lem to meet, since at TJHSST, all the computers in
the Systems Research Lab are compatible with MPI,
and have enough processing power to suffice for any
computational power I will be using.

3.2 Research Theory

Although I started with programs like embarrassingly
parallel computations, I have moved through more
difficult aspects of coding, namely the divide and con-
quer algorithms. My programs begin with writing a
non-MPI program, and converting it to work in par-
allel. Since I've developed a clear grasp of the basics
of MPI, I've moved on to more difficult tasks, such
as automating the testing as well finding real results
within my data rather than just writing example pro-
grams. This has really shown in the 3rd and 4th
quarters, in which I’ve created a system in which the
user simply has to input data into a text file that
will be read in and run by a secondary program that
transmits data to the main program.

Latency has many definitions, but in terms of MPI,
it represents the amount of time a processor has to
wait to receive a message from another processor. In
MPI, this number is essential in making a program as
efficient as possible, and will become a major focus in
the next quarter. Run-times for parallel processing is
basically a combination of two factors: latency and
processing power. Depending on which one the com-
puter excels at, a program will be better off either
sending more messages and calculating less per mes-
sage, or sending large messages at once, and spending
more time between messages calculating. Finding the
perfect balance is the problem that is being posed.

3.3 Developmental Procedures

During first and second quarter, I followed along with
the supercomputing class, which has been diving into
parallel programming with MPI. However, nearing
the end of the 2nd quarter, I decided to break off,
and work more on the game of life program. The
process began with writing the game of life without
MPI, which was done quickly. However, making it
run in parallel was the hard part, hindered by two
problems: Java has been my main language for the
past three years, so I run into syntax errors in C
quite often, and because I encountered problems at
first with sending and receiving in MPI (array sizes
caused problems in the game of life). However, in the
3rd and 4th quarters, the problems instead revolved
much more around file i/o and the inability of the C
language to use strings effectively, which caused prob-
lems when I was attempting to automate the whole
process. Though this was fixed eventually, there are
still other problems that I have been mostly unable
to address, which I will discuss later, like overhead.
The theory behind the game of life with MPI is that
the board will be split by the number of processors
used in calculation. But each section also needed
a limited amount of information from surrounding
areas, and this is where message passing came into
play. My time focused on writing code that would
allow each processor to send one row or one column
to another computer, as well as receive it. This is
also where the latency problem comes into play. If a
computer sends and receives not one, but two rows

and columns at once, then the first time it runs, the
data will be accurate up to the first row. Then, after
being run the second time, the data is accurate inside
the assigned section. Thus, by doubling the amount
passed (or actually more than doubling), the amount
of time needed before information needs to be passed
again is also doubled. (Figure 2) But a limit has to be
drawn eventually. There is little use in, say, passing
the entire board to each cell. Also, when the main
computer receives a print command, it will wait for
all the other computers to send information on its
section, and combine them to display output on the
screen (this is just parent-child).

3.4 Testing and analysis

Because of the nature of MPI, it is not restricted
to certain capabilities, though it does excel at some.
Thus, a variety of possible displays and processes can
be run, and depending on the specifics of each pro-
gramming, different debugging and error analyses are
required. In specific, every program I write needs
to have the number of processors specified. For the
game of life, I am working on a feature that allows the
user to input the exact width and length and number
of cells to start alive (in the form of a percentage),
before the program runs, and also use mouse clicks
to let the simulation run, or to run it step by step.
The heat program will have a similar interface.

But what is important is not what the programs
look like when they run, since they will be the same
if I pass one row or five rows. What is important
is the records of their run-times, which I will try to
write a general program to record, so I dont have
to manually run everything. Fortunately, since the
game of life and heat programs use similar boards
and characteristics, it should be relatively simple to
write one testing program for both of them that will
record speeds based on amount of message passing
vs. amount of internal processing. The final product
will be creating a program that can find the optimal
conditions for a certain problem (in this case, game of
life, though it can be expanded to fit for other prob-
lems). In theory, a graph will be constructed based
on the data I received based on run time correlated
with information passed as well as number of com-

puters. Then, by analyzing this chart and converting
it to a graph, I hope to be able to find a general for-
mula on how to approach similar problems involving
latency.

4 Results, Discussion, Conclu-
sion, Recommendations

4.1 Expected Results

Although my original goal is to learn about parallel
programming more through MPI (something that is
still a goal actually), a field that will become more
important in the future. Even now, there are many
research teams comparing and contrasting different
ways of using MPI, including IBMs supercomputing
team. For example, one research I read was exploring
the possibility of a graphical interface called MPI-
Delphi for workstation networks that allows quick
and easy access for programmers. Even at the pro-
fessional level, I read about testing done on blocking
v. non-blocking coordinate checkpointing, another
method of MPI. So whether or not the research I do
yields a substantial result this year, or if I find a di-
rection to follow, the knowledge and skills I obtain
will become indispensable in the future. However, I
hope that the results I find will shed some light on
the importance of latency and multiple processors in
efficiency.

The methods and programs to find optimization
pale in comparison to the works that are being stud-
ied by programmers outside of a classroom setting.
But even these simple tests provide an important ba-
sis for problems that are sometimes not more com-
plex, but just much larger in magnitude. Though I
know I will not be able to try the coprocessor and vir-
tual node modes (which require dual processor nodes
on each computer, the one IBM uses has over 65,000
nodes, each dual), by learning from the basics and
working through these ideas, I can grasp the concept
behind research that is going on now and will con-
tinue in the future.

4.2 Results

From my results from the wind velocity lab, the ef-
ficiency in adding number of processors increased,
but steadily increased less until the number hit 8, at
which the processing time increased with each added
computer. From that point on, adding any more pro-
cessors only made the time initializing and passing
messages wasted. My 3rd and 4th quarter work were
focused on the game of life problem and optimizing
it with the variables that I've discussed. Though I
was hoping to find a clear relationship between la-
tency, run-time, and number of processors, the data
that I've produced (Figure 3) suggest otherwise. In
fact, some of the results are actually quite counterin-
tuitive.

The largest problem was the fact that as I added
processors, the run-time actually increased, almost
linearly. From the wind velocity problem, where the
optimal processors was around 8, we can see that
this is not supposed to happen. However, there are
reasons for why this occured. The first is simply that
the code I've written in MPI is flawed and inefficient.
Even so, that isn’t what accounts for most of the
inefficiency. After looking into the issue a bit when
I discovered the results, I saw that the problem is
the sheer amount of overhead from the passing of
information at every step. Even though only a little
bit of data is transported, it plays a large difference
when many processors are in play.

However, not all the results were against my origi-
nal hypothesis. From Figure 3, we can see that there
are some interesting things to note. First is the fact
that with less processors, the amount passed plays a
smaller role. With 4 processors, the variation in the
running time between when 1 row /column was passed
vs 5 has a difference of around 25 millseconds. How-
ever, with 9 processors, the variation is closer to 100
milliseconds. The second was that there was a gen-
eral trend for faster run speed as the amount passed
neared 4, and then a gradual increase in run time
again above 4. For the board size with which I ran
for testing was 108x108. This means that for 9 pro-
cessors, each processor covered an area of 36x36, and
with 4 processors, each computer covered an area of
54 x 54. It appears the the optimal number does

not scale with the amount of area that the processors
have the cover, but rather, stays at the number 4.
Exactly why though, I'm not sure, and if I had more
time, I would test different scenarios to discover a
better correlation.

One problem with measuring data was that it mea-
sured not only the number of processors used, but
also the amount of information passed between steps
(passed every step? Or every three steps?) This
will affect the latency and the amount of process-
ing that each computer has to do and create a situ-
ation with more than two variables, therefore adding
more chances of confounding factors in the experi-
ments. Depending on which task the processors are
more suitable for, one will yield better results.

4.3 Future Testing

Even though my task was somewhat complete, there
is always more research to be done as well as different
tests I could have run had there been more time. Mr.
Torbert has suggested using latency algorithms and
formulas that can be found online to gauge efficiency
and run-times, and there are many other possibili-
ties to consider as well. Even so, I have moved my
testing and programming more from the theoretical
and experimental, into something more practical. Al-
though the results I have uncovered may be insignifi-
cant compared to the grand-scale projects that major
companies are pursuing, they have much of the same
basics, and will provide a basis for me in the future to
work on, as well as an idea of how research is formally
done.

There are four main things that I would have liked
to complete for the project. The first is the reduc-
tion of the excessively high overhead that is involved
as more processors are added to pass data, since this
has severely skewed the data in the favor of less pro-
cessors. Second would be more testing on whether
or not four is really the "magic number” for latency,
since I highly doubt it would be a constant, but this
ties in with the third issue as well, since I would need
more computers to test the effect of latency. The
third is the use of more processors so that I could
test for even higher numbers. There seems to some-
times be a problem with the research lab computers

in which some of them refuse to run MPI, therefore
limiting the total of computers I had access to in
the end to less than 20, even though there should be
around 40. Finally, I would have wanted to use the
heat map program instead, since that is a more rel-
evant problem and one that could actually be of use
in the real world, whereas game of life is really just a
simple scheme.

5 Appendices for (y=amount;y>=1;y--)

for (x=xa;x<xatxymax;x++)
Sample Code of information passing section from arr[x] [yat+xymax+amount-1]=rec[x] [ya+xymax+amount-1];
Game of Life Lab: }

Sample Code from the game of life automated test-
0: ing program

int xymin
int xymax = max/sqrt(size); FILE* outfile;
int xs=((int)rank)%((int)sqrt(size));
int ys=((int)rank)/((int)sqrt(size));
int xa=xs*xymax; board=atoi(message);
int ya=ys*xymax; int q;
step(xa,ya,xymax,size); char ch[100];

if (xs>0)
MPI_Send(arr,max*max,MPI_INT,rank—l,tag,MPI_ngp&&%¥QJ%f\n"’amount);

if (xs<sqrt(size)-1) sprintf (ch,"%d",amount) ;
MPI_Send(arr,max*max,MPI_INT,rank+1,tag,MPI_ngﬁkgg%QgH

outfile = fopen("lawl.txt","w");

,;n u) ;
if (ys>0) furite(&ch,sizeof (char),strlen(ch),outfile);
MPI_Send(arr,max*max,MPI_INT,rank-sqrt(size),tag,MPI_COMM_WORLD) ;
if (ys<sqrt(size)-1) sprintf (ch, "%d" ,num

);
MPI_Send(arr,max*max,MPI_INT,rank+sqrt(size),q§§fg§;6§pyMJﬂpRLD);p

)

//after sending, all computers waiting for Othfﬁii¥§9ﬁﬁ§§ﬁ§izeof(char),strlen(ch),outfile);
if (xs>0)

{ sprintf (ch,"%d" ,board) ;
MPI_Recv(rec,max*max,MPI_INT,rank—l,tag,MPI_CQﬁﬁj%Q&&HY&stgyus);
for (x=amount;x>=1;x--)

fwrite(&ch,sizeof (char),strlen(ch),outfile);
for (y=ya;y<yatxymax;y++)

arr [xa-amount] [y]=rec[xa-amount] [y] ; char run[100];
¥ strcpy(run, "mpirun -machinefile hosts.txt -np ");
if (xs<sqrt(size)-1) char numpr[10];
{ I

MPI_Recv(rec,max*max,MPI_INT,rank+1,tag,MPI_CQMMr%ﬁ%Q{h&ﬁgfgnfad,nump);

for (x=amount ;x>=1;x—-) strcat (run,numpr) ;
for(y=ya;y<yatxymax;y++) strcat(run," golmpil3");
arr [xa+xymax+amount-1] [y]=rec [xa+xymax+amount-1] [y] ;

} int trials;

if (ys>0) fclose(outfile);

{ for (trials=3;trials>=0;trials--)
MPI_Recv(rec,max*maX,MPI_INT,rank—sqrt(size),gggﬂngghggyﬂ_WORLD,&Status);

for (y=amount;y>=1;y--)

m=0;
for (x=xa;x<xat+xymax;x++) value=0:
arr [x] [ya-amount]=rec[x] [ya-amount] ; for (q=0;q<3;q++)
} message [q]="\0";
if (ys<sqrt(size)-1)
{

MPI_Recv(rec,max*max,MPI_INT,rank+sqrt(size),tag,MPI_COMM_WORLD,&status);

Comparison of Master-Slave and
Divide and Conquer Methods of T T
Parallel Programming in the Game | | |
of Life | | |

|
T \ Divide and Conquer
l
I

Master-Slave

Figure 1

Example of Latency vs. Processing Power

a processor before any information is passed

After one row/column has after two rows/columns have been
been passed Before “step” passed

' er st '

Accurate data that is
inside the processor's

area

Accurate data that is
outside the processor's
area

Figure 2

Processors

Passed

Runtime

495.2

3945.4

3951

3949

3938.4

Passing Amount vs Run Time (4

3948.9

7109.8

7131

7092.4

OlO|O|OJO| DD D|R]-

I EN IR TN ES IS EN TS DS B

7060.9

7100.6

processors)
3955
[}
T 3950 A
e =
€2 3945
5 2
x =
E 3940 o
3935 T T T T T
0 1 2 3 4 5
Amount passed (# rows/columns)
Passing Amount vs Run Time (9
processors)
= 7140
(%]
® T 7120 .//—‘\
£ 8 7100 »>
£ § 7m0 o
x© E 7060 +
= 7040 ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5

Amount passed (# of rows/columns)

Figure 3: Chart with data and graphs plotting data correlations

Figure 3

6 Literature Cited

P. Pacheco, Parallel Programming with MPI, M.
Kauffman: San Francisco, California, 1997.

Acacio, M., Cnovas, O., Garca, J. M., Lpez-
de-Teruel, P. E. (2001, October). MPIDelphi: an
MPI implementation for visual programming envi-
ronments and heterogeneous computing. Future
Generation Computer Systems, 18(3), 317-333. Re-
trieved from ProQuest database.

Almsi, G., Archer, C., Castaos, J. G., Gunnels,
J. A. (2005, March). Design and implementation of
message-passing services for the Blue Gene/L super-
computer. IBM Journal of Research and Develop-
ment, 49(2/3), 393-406. Retrieved from ProQuest
database.

Buntinas, D., Coti, C., Herault, T., Lemarinier,
P., Pilard, L., Rezmerita, A., et al. (2008, January).
Blocking vs. non-blocking coordinated checkpointing
for large-scale fault tolerant MPI Protocols. Future
Generation Computer Systems, 24(1), 73-84. Re-
trieved from ScienceDirect database.

Gregoretti, F., Laccetti, G., Murli, A., Oliva,
G., Scafuri, U. (2008, February). MGF: A grid-
enabled MPI library. Future Generation Computer
Systems, 24(2), 158-165. Retrieved from ScienceDi-
rect database.

Gupta, R., Vadhiyar, S. S. (2007). An efficient
MPI allgather for grids. High Performance Dis-
tributed Computing, 169-178. Retrieved from Portal
database.

Lisandro, Dalcn, Paz, R., Storti, M., D’Ela, J.
(2008). MPI for Python: Performance improvements
and MPI-2 extensions. Journal of Parallel and Dis-
tributed Computing, 68(5), 655-662. Retrieved from
Portal database.

7 Acknowledgements

Special thanks to Mr. Latimer for help throughout
the year.

Also thanks to Mr. Torbert for help with MPI with
programs like wind velocity and Mandelbrot, as well
as much help with debugging during the 3rd and 4th
quarter, as well as ideas for future projects

10

