
Excursions into Parallel
Programming

By Michael Chen

November 1, 2007

TJHSST Computer Systems Lab 2007-2008

Abstract:
With more and more computationally-intense problems
appearing through the fields of math, science, and
technology, a need for better processing power is needed in
computers. The solution can be found through parallel
processing, the act of linking together multiple computers
and cutting run-time by using all of them efficiently. MPI
(Message Passing Interface) is one of the most crucial and
effective ways of programming in parallel, despite its
difficulty to use at times. However, there has been no
effective alternate to this date, and continues as the de
facto standard of parallel programming. By exploring this
rapidly-expanding field, novel approaches can be found to
the most complex of problems, even modeling climate
change.

Introduction:
-MPI is adaptable and can solve a variety of problems
 -Divide and Conquer, Pipeline, Synchronous
-Parallel programming is a rapidly expanding field
-High computational power
-De Facto standard of parallel programming
-Promise for the future
-Current development: DARPA Grand Challenge

Procedures and Methodology:
-Uses C, C++, and Fortran
-Flexible, not restricted to certain capabilities
-Many Reference Sources
 -Parallel Programming with MPI
 -Introduction to Parallel Programming
-Many different levels of code difficulty
-Possible implementation of a graphical interface

Results and Conclusions:
-Future research is necessary
 -blocking vs. non-blocking checkpointing
 -easier debugging and programming
-Large range of modeling problems possible
 -Climate change
 -Molecular biology
 -Artificial intelligence
-MORE WILL BE ADDED

Miscellaneous chart. Actual info added later. (screenshot prints out black)

Sample Code and
Test Runs:

while(1)
{
 double px = 0;
 double py = 0;
 //receives info and sets initial velocity
 MPI_Recv(args,3,MPI_DOUBLE,0,tag,MPI_COMM_WORLD,&status);

 double vx = v0*cos(args[1]*M_PI/180);
 double vy = v0*sin(args[1]*M_PI/180);
 double vw = -args[0];
 //checks to see if parent process ends this process
 if (args[2]==666.0)
 break;
 while (py>=0) //as long as the projectile has height
 {
 //recalculates acceleration and accounts for it
 ax = (vx-vw)*(vx-vw)*rf;
 //acceleration of wind depends on direction of wind
 //with respect to the direction of the projectile
 if (vw<vx)
 ax=-ax;
 //checks if wind velocity is working with/against gravity
 if (vy>0.0)
 ay=-g-rf*vy*vy;
 else
 ay=-g+rf*vy*vy;
 vx+=(ax*dt);
 vy+=(ay*dt);
 px+=vx;
 py+=vy;
 }
 //sets value as the ending location of projectile and sends it
 args[2]=px;
 MPI_Send(args,3,MPI_DOUBLE,0,tag,MPI_COMM_WORLD);

}

Sample code from child process in wind velocity lab.

