
Excursions into Parallel 
Programming

By Michael Chen

November 1, 2007

TJHSST Computer Systems Lab 2007-2008

Sample Code and 
Test Runs:

while (py>=0) //as long as the projectile has height
{

//recalculates acceleration and accounts for it
ax = (vx-vw)*(vx-vw)*rf;
//acceleration of wind depends on direction of wind
//with respect to the direction of the projectile
if (vw<vx)

ax=-ax;
//checks if wind velocity is working with/against gravity
if (vy>0.0)

ay=-g-rf*vy*vy;      
else 

ay=-g+rf*vy*vy;
vx+=(ax*dt);
vy+=(ay*dt);
px+=vx;
py+=vy;

}
//sets value as the ending location of projectile and sends it
args[2]=px;
MPI_Send(args,3,MPI_DOUBLE,0,tag,MPI_COMM_WORLD);

}

Sample code from child process in wind velocity lab.

Abstract:
With more and more computationally-intense problems 
appearing through the fields of math, science, and 
technology, a need for better processing power is needed 
in computers. MPI (Message Passing Interface) is one of 
the most crucial and effective ways of programming in 
parallel, and despite its difficulty to use at times, it has 
remained the de facto standard. But technology has been 
advancing, and new MPI libraries have been created to 
keep up with the capabilities of supercomputers. Efficiency 
has become the new keyword in finding the number of 
computers to use, as well as the latency when passing 
messages. The purpose of this project is to explore some of 
these methods of optimization in specific cases like the 
game of life problem and heat dissipation.

Introduction:
MPI is adaptable and can solve a variety of problems

-Divide and Conquer, Pipeline, Synchronous
-High computational power, used in every field for intense 
calculations (AI, molecular biology, ecosystems)
-Expansions in library to adjust for use with 
supercomputers
-Efficiency becoming an issue: Latency v. Processing 
Power

Procedures and Methodology:
-Uses C, C++, and Fortran
-Flexible, not restricted to certain capabilities
-Start with non-mpi code, then convert
-Works very case by case, no general testing program
-Optimization of code depends on a computer’s specific 
latency and its processing power. Depending on which 
works better, the number of computers best used as well 
as amount of passing in code used changes.

Results and Conclusions:
-Many real-life applications

-blocking vs. non-blocking checkpointing
-supercomputing

-With wind velocity program, optimum number of computers 
is eight, though this is a simple example.
-With the game of life, more factors will have to be 
considered that just number of computers: how often to pass 
information, and how much information to pass.
-Moving the program from theoretical to the practical
-Latency algorithms for testing possible

Game of life and similar problems (heat dispersion)

Diagram of latency vs. processing

Sample test run from Game of Life Lab

//all processors make a move (only in their area)
step(xa,ya,xymax,size);
//corners are not covered, need to swap around the pass statements
if (xs>0)

MPI_Send(arr,max*max,MPI_INT,rank-1,tag,MPI_COMM_WORLD);
if (xs<sqrt(size)-1)

MPI_Send(arr,max*max,MPI_INT,rank+1,tag,MPI_COMM_WORLD);
if (ys>0)

MPI_Send(arr,max*max,MPI_INT,rank-
sqrt(size),tag,MPI_COMM_WORLD);
if (ys<sqrt(size)-1)
MPI_Send(arr,max*max,MPI_INT,rank+sqrt(size),tag,MPI_COMM_WORLD);
//after sending, all computers waiting for other processes, then processes 
them

Sample code from Game of Life lab


