Patrick Coleman

Period 6

COMPUTER SYSTEMS RESEARCH
Fall/Spring 2007-2008

Research Paper Second Draft - January 2008

The Sugarscape

1. Abstract

This project studies artificial societies, especially the Sugarscape and the Schelling
segregation model. To implement the Sugarscape, a display of the sugar-filled
environment with agents is outputted, the simulation allows agents to harvest
sugar, consume sugar, die of starvation, migrate during plagues, reproduce, and
combat each other and allows the environment to grow back at a given rate
and undergo plagues. To implement the Schelling segregation model, two or
three distinct groups of agents are added to the environment with a prefer-
ence for neighbors of their own kind to determine the effects of the individual
preferences on the society at large. The reasons these two projects are being
implemented is because while both are often compared, the two models in their
original forms have not been combined and analyzed in a single simulation. In
addition to displaying the environment graphs showing the population growth
and wealth distribution are displayed. These graphs analyze what is occurring
in the simulation. The program code is broken up into files: a main file, an
environment file, an agent file, a location file, a display file, and a simulation
file. The conclusions show that the the model conforms to Axtell and Epstein’s
models in the areas which were implemented. But more importantly, it shows
that the simulation conforms to real world phenomena reasonably well.

2. Introduction

The program implements several aspects of Axtell and Epstein’s Sugarscape
model. An environment with locations holding various amounts of sugar, which
grows back over time is populated by a heterogeneous group of agents, different
with respect to vision, metabolism (rate at which sugar is consumed), start-
ing wealth, and age limit. The agents move to the locations with the highest
concentration of sugar. Over time agents die and new agents are added to the
environment according to a logistic function. Two graphs are displayed: one
showing population growth over time and the other showing wealth distribution.
The information shown by these two graphs will be analyzed.

3. Background

As of yet the Sugarscape society has not been implemented in Ruby and it
would be valuable for this code to be available because of the scope of the
Sugarscape research. Sugarscape has inspired further research concerning agent-
based modeling and artificial societies. The Schelling segregation model was one
of the first artificial societies to be implemented on a computer and has defined
the area of study. The combination of these two models can provide valuable
insight into human culture. Perhaps 3 different groups could be put into the
Sugarscape instead of the usual two different groups. Lastly, combat between
different groups will be implemented, as this has not yet been done by Tony
Bigbee at George Mason.

Growing Artificial Societies: Social Sciences from the Bottom Up written by
Joshua M. Epstein and Robert Axtell and Micromotives and Macrobehavior by

Thomas Schelling define Sugarscape and the Schelling segregation model. Tony
Bigbee from George Mason University has written the Sugarscape in Java and
his code will be used for reference along with the first book primarily. In the
book by Axtell and Epstein Schelling’s segregation model is mentioned and the
Sugarscape is built with two separate groups (tribes) which combat against
each other. The results should mirror those of the Sugarscape models in Grow-
ing Artificial Societies. However, once Schelling segregation is implemented
with possibly more than two different colored populations the results will dif-
fer. In all likelihood only two groups will survive in the long run. The final
results will be presented with screenshots of the running program along with
graphs of relationships of variables. It will perform like previous Sugarscape
models. Growing Artificial Societies and Micromotives and Macrobehavior are
two books which are used as references to develop this project. The article
“Seeing Around Corners” shows how both the Schelling segregation model and
the Sugarscape compare to various other artificial societies in the field of gener-
ative social sciences. “The Theoretical Basics of Popular Inequality Measures”
examines various ways of determining inequality in a population. The measures
used are: simple range, the McLoone index, the coefficient of variation, the Gini
coefficient, and Theil’s T statistic. Gigliotta’s article “Groups of Agents with a
Leader” examines how a leader affects a group of agents attempting to reach a
goal location. The leader was effective in small groups without communication,
and especially effective when he had increased vision.

4. Development

I. Theory. The algorithm driving the move method of the agents is at the
core of the simulation. The agents look out in the four cardinal directions as
far as their vision allows and move one square in the direction of the closest
location with the most sugar. If more than one location is optimum, a random
direction is chosen. See the section on agent movement in Appendix A. Agents
are added to the environment according to a logistic function which follows
the form of: P x (1 — £) where P is the current population level and K is
the carrying capacity. The section on population growth in Appendix A shows
how the population growth is graphed. The inequality of the population is
found using the Gini coefficient. The Gini coefficient is calculated according to
the formula: 1 — 2 % L where L is the area under the Lorenz curve, which is
calculated using trapezoidal Reiman sums. The section on wealth distribution
in Appendix A shows how the Gini coefficient is calculated and how the Lorenz
curve is graphed.

II. Design Criteria. The goal of the project is to accurately represent the mod-
els it is implementing. It follows the Sugarscape design from Growing Artifi-
cial Societies by Axtell and Epstein and the Schelling segregation design from
Schelling’s book Micromotives and Macrobehavior. The agents and the environ-
ment behave as they should with respect to the aspect implemented so far. The
Schelling segregation model will accurately represent Schelling’s model as best
as possible, but will not be perfect because concessions will need to be made

to allow it to run in the Sugarscape. The information shown in the graphs and
the display of the environment will be compared to the results found by the
authors.

III. Materials. The program code was written in Ruby (see http://ruby-lang.org/).
Tk toolkit is used for the GUI representation and graphics in the program. A
text file which represents the maximum capacities of sugar in various locations
in the environment was used from GMU’s Tony Bigbee’s files (he wrote a Java
version).

IV. Procedures. Currently the program displays the environment, and has the
agents move and harvest sugar. The display draws each location in the matrix
using a circle whose radius increases based on the amount of sugar at that
location. The display draws the agents as a red circle with the same radius
as a location with the maximum amount of sugar. The display also shows the
current time step. The GUI window has a frame containing the canvas and
buttons to play, pause, and step the simulation and to quit the program. The
agents themselves choose the closest location with the greatest amount of sugar.
If more than one location matches these requirements, one of them is randomly
chosen. Then the agent harvests the sugar and consumes from his own supply
of sugar. At each time step the sugar in the environment grows back by one.
The program begins with a small number of agents and adds to the population
using a logarithmic function so that it reaches carrying capacity. Modifications
in the individual agents include an improved move method, a random age limit,
and a variable for red or blue color. The GUI window has been modified to
include buttons to change the graph and change the refresh rate. There is an
input box to change the refresh rate in the display of the environment and of the
graphs. the two graphs which are now displayed are the population growth over
time, and the percent of total wealth over the percent of the population (Lorenz
curve). To get the population graph, it keeps track of the length of the array of
agents at each time step in the simulation file and cycles through the array of
population values in the display file. To get the wealth graph, it cycles through
the array of agents and stores the wealth of each individual agent. Then it sorts
this array and cycles through it keeping a running total to determine percents.

5. Results

It has been determined that the program meets the design criteria in the areas
in which it was implemented. The graphs are what answer many of the ex-
perimental questions. Descriptions of the population growth graph refer to the
section on population growth in Appendix B. In general it follows the shape of
logistic graphs which are proven to be a fairly accurate representation of pop-
ulation growth. Growth is slow when the population is close to zero and close
to the carrying capacity, and growth is highest at half of the carrying capacity.
The few anomalies reveal certain aspects of the simulation. The initial portion
of slow growth is smaller than the final portion because the population begins
with three individuals instead of one (but starting with one agent would not

completely remedy this). The oscillations near carrying capacity come from the
age limit of agents. It takes longer for the population to decrease due to dead
agents than it does for it to react to the added agents. The oscillations decrease
over time and will eventually disappear. At about half of carrying capacity
the line begins to become jagged instead of fairly straight like it was earlier in
the simulation. This is a result of the heterogeneous population. In the be-
ginning even agents with low vision and high metabolism (less fit agents) have
room to survive in the regions of abundant sugar. As the environment fills up
only better fit agents can survive on the fringes, areas with less sugar, so many
added agents die quickly. The effects are even more pronounced as population
approaches carrying capacity. Descriptions of population inequality refer to the
graph in the wealth distribution section of Appendix B. At first a bar graph was
used to represent wealth distribution, but it was replaced with the Lorenz curve.
Both conform to the graphs in Axtell and Epstein’s book. They show that there
are very few wealthy agents (agents with a lot of harvested sugar stored) and
many poor agents. In this sense the population is pretty unequal. The Gini
coefficient is a numerical representation of this phenomenon. A coefficient of
zero represents perfect equality and one represents perfect inequality (one agent
has all the wealth). The number is just over .5 showing that the Sugarscape
population is closer to perfect inequality than to perfect equality.

6. Further Research

Further research could include implementing other aspects of the Sugarscape,
as described by Axtell and Epstein. Possible topics include reproduction or the
trade of spice. In addition, other studies of artificial societies (like Schelling’s
segregation model) could be analyzed using the Sugarscape as the base environ-
ment. Changing the range of values in the heterogeneous aspects of the agents
yields different results in the graphs. This could be attempted to be quantified.
Combat could be implemented, a desire expressed by Tony Bigbee. Genocide,
as described in “Seeing Around Corners” could be implemented. The man-
ner in which agents are added to the environment could be done according to
other functions to show other phenomena, like exponential growth.In addition
to changing the environment, the method of determining social equality could
be determined using some of the different methods described in “The Theoret-
ical Basics of Popular Inequality Measures.” Lastly, the Sugarscape could be
implemented in other languages, like assembly for example.

Bibliography

Epstein, Joshua M. and Robert Axtell. Growing Artificial Societies: Social
Sciences from the Bottom Up. Washington, D.C.: The Brookings Institute
Press, 1996.

Gigliotta, Onofrio. “Groups of Agents with a Leader.” Journal of Artificial
Societies and Social Simulation 10 (2007). 30 Jan. 2007

< hitp : //jasss.soc.surrey.ac.uk/10/4/1.html > .

Hale, Travis. “The Theoretical Basics of Popular Inequality Measures.” Univer-
sity of Texas. < http : //utip.gov.utexas.edu/tutorials/theopasic;negmeasures.doc >

Rauch, Jonathan. “Seeing Around Corners.” The Atlantic Monthly. Apr. 2002.
35-48.

Schelling, Thomas C. Micromotives and Macrobehavior. New York: W. W.
Norton & Company, Inc., 1978.

Appendices
Appendice A
Code

agent move method

def move2

choices = []

4 .times {choices << [@@env[@posY] [@posX],-1,0]1}

choices[0] = nil if @posY+l1 >= @Q@env.length or

Q@Qenv [@posY+1] [@posX] .hasAgent != -1

choices[1] = nil if @posY-1 < O or @@env[@posY-1] [@posX] .hasAgent != -1
choices[2] = nil if @posX+1 >= @@env.length or

@Qenv [@posY] [@posX+1] .hasAgent != -1

choices[3] = nil if @posX-1 < 0 or @@env[@posY] [@posX-1].hasAgent != -1

return if choices == [nil,nil,nil,nil]

for k in 1..0vision do

if choices[0] != nil and @posY+k < @@env.length and

Q@Qenv [@posY+k] [@posX] . sugarquant > choices[0] [1]

choices[0] = [@Q@env[@posY+1] [@posX],@@env [@posY+k] [@posX].sugarquant,k]
end

if choices[1] '= nil and @posY-k >= 0 and

@Q@env [@posY-k] [@posX] . sugarquant > choices[1][1]

choices[1] = [@@env[@posY-1] [@posX],@@env [@posY-k] [@posX].sugarquant,k]
end

if choices[2] != nil and @posX+k < @Qenv.length and

@@env [@posY] [@posX+k] . sugarquant > choices[2] [1]

choices[2] = [@Qenv[@posY] [@posX+1],0@Q@env [@posY] [@posX+k] .sugarquant,k]
end

if choices[3] !'= nil and @posX-k >= 0 and

@Qenv [@posY] [@posX-k] .sugarquant > choices[3][1]

choices[3] = [@@env[@posY] [@posX-1],@@env [@posY] [@posX-k] .sugarquant,k]
end

end

choices = choices.compact
choices.sort! {Ix,yl y[1] <=> x[1]}

while choices[-1][1] != choices[0][1] and choices[-1][2] != choices[0] [2]
choices.pop

end

i = rand(choices.length)

return if choices[i] [0] == nil
@posX = choices[i] [0] .posX
@posY = choices[i] [0] .posY
end

population graphing method

def drawPop

$graph.delete(:all)

TkcLine.new($graph,40,40,40,$w-40)

TkcLine.new($graph,40, $w-40, $w-40, $w-40)
TkcText.new($graph, $w/2,30, : text=>"Population levels over time",
:font=>[’Helvetica’,15, ’bold’])

TkcText .new($graph,10,$w/2, :text=>"P\no\np\n \nl\ne\nv\ne\nl",
:font=>[’Helvetica’,10,’bold’])

TkcText .new ($graph, $w/2,$w-10, : text=>"Time", : font=>[’Helvetica’,10,’bold’])
for n in 1...poplLength do

break if getPop[n] == nil

TkcLine.new($graph,50+((n-1)*400/$popLength),

$w-40-($w-100) *getPop [n-1] /maxPop, 50+n*400/$popLength, $w-40- ($w-100) *getPop [n] /maxPop)
end

TkcOval.new($graph,50+n*400/$popLength-2, $u-40-

($w-100) *getPop [-1] /maxPop-2,50+n*400/$popLength+2, $w-40- ($w-100) *getPop [-1] /maxPop+2)
tinit = getStep-getPop.length

TkcText .new($graph,40,$w-30, : text=>"#{tinit}")

TkcText .new($graph,50+n*400/$popLength, $w-30, : text=>"#{getStep}")

TkcText .new ($graph, 25,60, : text=>"#{maxPop}")

TkcText .new ($graph, 75+n*400/$popLength-2,

$w-40- ($w-100) *getPop [-1] /maxPop, : text=>"#{getPop [-1]1}")

TkcText .new($graph, 25, $w-40, : text=>"0")

end

Lorenz curve graphing method

def drawWealth

$graph.delete(:all)

TkcLine.new($graph,40,40,40,$w-40, :arrow=>:first)
TkcLine.new($graph,40, $w-40, $w-40, $w-40, :arrow=>:1last)

TkcText .new($graph,$w/2,30, :text=>"Wealth Distribution",
:font=>[’Helvetica’,15,’bold’])

TkcText .new ($graph,10,$w/2, : text=>"%\n \no\nf\n \nW\ne\na\nl\nt\nh",
:font=>[’Helvetica’,10,’bold’])

TkcText.new($graph, $w/2,$w-10, : text=>"J, of Population",
:font=>[’Helvetica’,10, ’bold’])

wealths = [0]
totalW = 0

for a in $env.agents do
w = a.wealth

totalW += w if w > O
wealths << w if w > O
end

wealths.sort!

x = 400.0/(wealths.length-1)
y = 400.0/totalW
dx = 1.0/(wealths.length-1)
dy = 1.0/totalW

giniAr = 0

count = [0,0]

for n in 1...wealths.length do

count = [count[1],count[1]+wealths[n]]
TkcLine.new($graph,40+(n-1) *x,$w-40-count [0] *y,40+n*x , $w-40-count [1] *y)
giniAr += (count[0] + 0.5 * (count[1]-count[0]))*dx*dy

end

TkcText .new($graph,30,$w-30, :text => "0%")

TkcText.new ($graph,440,$w-25, :text => "100% (#{$env.agents.length})")
TkcText.new($graph,40,15, :text => "100%")

TkcText .new($graph,40,30, :text => "(#{totalW})")
TkcText.new($graph, 150,150, :text=>"Gini coefficient:\njf" % (1.0-2*ginilr),
:font=>[’Helvetica’,10,’bold’])

end

Appendice B

Graphs

population growth

pcoleman -'Sugarscape

~The Sugarscap

1250

—m<m— TowT

Population levels over time

MHEB

hange groph | Berreshrate [qut

4300

Time

Play Pause Step Step: 4330

wealth distribution

~The Sugarscape 1 ¥ Data
100%
(227662) Wealth Distribution
Gini coefficient: ;
0.505603 I
% ;,‘
° /
f E
w /
[J
a I/
I ;
t ;
h
S
0% 100% (1181)
% of Population

e A Tl i —

10

