Programming a New Sugarscape

Patrick Coleman
Period 6
COMPUTER SYSTEMS RESEARCH
Fall/Spring 2007-2008
Research Paper

June 10, 2008

Abstract

This project studies artificial societies, especially the
Sugarscape and the Schelling segregation model. To
implement the Sugarscape, a display of the sugar-
filled environment with agents is outputted. The
simulation allows agents to harvest sugar, consume
sugar, die of starvation, and die of old age and al-
lows the environment to grow back at a given rate.
To implement the Schelling segregation model, two
distinct groups of agents are added to the environ-
ment with a preference for neighbors of their own
kind to determine the effects of the individual pref-
erences on the society at large. The reasons these
two projects are being implemented is because while
both are often compared, the two models in their
original forms have not been combined and analyzed
in a single simulation. In addition to displaying the
environment, graphs showing the population growth
and wealth distribution are displayed. These graphs
analyze what is occurring in the simulation. Agents
asexually reproduce. Seasons are implemented to an-
alyze agent migration. The program code is broken
up into files: a main file, an environment file, an agent
file, a location file, a display file, and a simulation file.
The conclusions show that the the model conforms
to Axtell and Epstein’s models in the areas which
were implemented. But more importantly, it shows
that the simulation conforms to real world phenom-
ena reasonably well.

1 Introduction

The program implements several aspects of Axtell
and Epstein’s Sugarscape model. An environment
with locations holding various amounts of sugar,
which grows back over time is populated by a het-
erogeneous group of agents, different with respect to
vision, metabolism (rate at which sugar is consumed),
starting wealth, color, and age limit. The agents
move to the locations with the highest concentration
of sugar. Over time agents die and new agents are
added to the environment by asexual agent reproduc-
tion. Two graphs are displayed: one showing popula-
tion growth over time and the other showing wealth
distribution. The information shown by these two
graphs is analyzed. In addition Schelling segregation
and seasonal migration are implemented.

2 Background

As of yet the Sugarscape society has not been im-
plemented in Ruby and it would be valuable for this
code to be available because of the scope of the Sug-
arscape research. Sugarscape has inspired further re-
search concerning agent-based modeling and artificial
societies. The Schelling segregation model was one
of the first artificial societies to be implemented on
a computer and has defined the area of study. The
combination of these two models can provide valu-
able insight into human culture. Perhaps 3 different

groups could be put into the Sugarscape instead of
the usual two different groups. Lastly, combat be-
tween different groups will be implemented, as this
has not yet been done by Tony Bigbee at George
Mason.

Growing Artificial Societies: Social Sciences from
the Bottom Up written by Joshua M. Epstein and
Robert Axtell and Micromotives and Macrobehav-
ior by Thomas Schelling define Sugarscape and the
Schelling segregation model. Tony Bigbee from
George Mason University has written the Sugarscape
in Java and his code will be used for reference along
with the first book primarily. In the book by Ax-
tell and Epstein Schelling’s segregation model is men-
tioned and the Sugarscape is built with two separate
groups (tribes) which combat against each other. The
results should mirror those of the Sugarscape models
in Growing Artificial Societies. The final results will
be presented with screenshots of the running program
along with graphs of relationships of variables. It will
perform like previous Sugarscape models. Growing
Artificial Societies and Micromotives and Macrobe-
havior are two books which are used as references to
develop this project.

The article “Seeing Around Corners” shows how
both the Schelling segregation model and the Sug-
arscape compare to various other artificial societies
in the field of generative social sciences. “The Theo-
retical Basics of Popular Inequality Measures” exam-
ines various ways of determining inequality in a pop-
ulation. The measures used are: simple range, the
McLoone index, the coefficient of variation, the Gini
coefficient, and Theil’s T statistic. Gigliotta’s article
“Groups of Agents with a Leader” examines how a
leader affects a group of agents attempting to reach
a goal location. The leader was effective in small
groups without communication, and especially effec-
tive when he had increased vision. “Self-Organizing
Social and Spatial Networks under What-if Scenar-
ios” by Moon et al analyzes the combination of Sug-
arscape, a spacial model, and Construct a network
model. “Comparing Multicast and Newscast Com-
munication in Evolving Agent Societies” by Eiben
et al looks at the effectivenes of communication be-
tween a small group versus a more successful model
of communicating with the entire group. “The MA-

SON HouseholdWorld of Nomads” by Cioffi-Revilla
et al describes the migration of ancient Inner Asian
nomad societies.

3 Development

I. Theory. The algorithm driving the move method
of the agents is at the core of the simulation. The
agents look out in the four cardinal directions as far
as their vision allows and move one square in the di-
rection of the closest location with the most sugar. If
more than one location is optimum, a random direc-
tion is chosen. To incorporate Schelling segregation,
locations in which there would be more agents of the
opposite color than of the same color are removed
from the possible choices. See the section on agent
movement in Appendix A.

Agents are added to the environment according to
an exponential function which models real life. The
section on population growth in Appendix A shows
how the population growth is graphed.

The inequality of the population is found using the
Gini coefficient. The Gini coefficient is calculated
according to the formula: 1 — 2 % L where L is the
area under the Lorenz curve, which is calculated us-
ing trapezoidal Reiman sums. The section on wealth
distribution in Appendix A shows how the Gini co-
efficient is calculated and how the Lorenz curve is
graphed. Lastly, hemispherical winters cause agent
migration to other high density locations and cause
a drop in population.

II. Design Criteria. The goal of the project is to ac-
curately represent the models it is implementing. It
follows the Sugarscape design from Growing Artificial
Societies by Axtell and Epstein and the Schelling seg-
regation design from Schelling’s book Micromotives
and Macrobehavior. The agents and the environment
behave as they should with respect to the aspect im-
plemented so far. The Schelling segregation model
will accurately represent Schelling’s model as best as
possible, but will not be perfect because concessions
will need to be made to allow it to run in the Sug-
arscape. The information shown in the graphs and
the display of the environment is compared to the
results found by the authors.

ITI. Materials. The program code was written in
Ruby (see http://ruby-lang.org/). Tk toolkit is used
for the GUI representation and graphics in the pro-
gram. A text file which represents the maximum ca-
pacities of sugar in various locations in the environ-
ment was used from GMU’s Tony Bigbee’s files (he
wrote a Java version).

IV. Procedures. Currently the program displays
the environment, and has the agents move and har-
vest sugar. The display draws each location in the
matrix using a circle whose radius increases based on
the amount of sugar at that location. The display
draws the agents as a red circle with the same radius
as a location with the maximum amount of sugar.
The display also shows the current time step. The
GUI window has a frame containing the canvas and
buttons to play/pause, step the simulation, increase
the refresh rate, and to quit the program.

The agents themselves choose the closest location
with the greatest amount of sugar. If more than one
location matches these requirements, one of them is
randomly chosen. Locations with more agents of the
opposite color are removed from the choices. Then
the agent harvests the sugar and consumes from his
own supply of sugar. At each time step the sugar in
the environment grows back by one. The program
begins with a small number of agents and adds to
the population using an exponential function so that
it reaches carrying capacity. Modifications in the in-
dividual agents include an improved move method, a
random age limit, and a variable for red or blue color,
to allow for segregation.

The GUI window has been modified to include but-
tons to change the graph and change the refresh rate.
There is a button to change the refresh rate in the
display of the environment and of the graphs. There
is a button to toggle winters on and off, to analyze the
effects at various stages of population growth. There
is also a button to turn Schelling Segregation on and
off.

The two graphs which are now displayed are the
population growth over time, and the percent of total
wealth over the percent of the population (Lorenz
curve). Each graph displays data for the red group
of agents, the blue group of agents, and the entire
population. To get the population graph, it keeps

track of the length of the array of agents at each
time step in the simulation file and cycles through
the array of population values in the display file. To
get the wealth graph, it cycles through the array of
agents and stores the wealth of each individual agent.
Then it sorts this array and cycles through it keeping
a running total to determine percents.

4 Results

First, it can be said that the program accurately
represnts the models on which it was based. But
it does not model the real world as accurately. This
project draws primarily from two different sources.
The Sugarscape is modeled after the original which
was described in Growing Artificial Societies by Ax-
tell and Epstein. The significant differences are that
reproduction is asexual and no variable information
is passed as genetic inheritance and that spice trade
and combat were not implemented. Also significant
is that this project has never been done in Ruby.
The implementation of Schellings segregation, which
was originally described in his book Micromotives
and Macrobehavior, has a few significant differences
from his model. Most importantly, agents are al-
ways trying to move so that they can consume sugar.
Schelling had agents only move if they were unhappy.
The rules of segregation (more than 50 percent must
be the same color) are more strict than Schellings
original one third. Also the environment does not
wrap around the edges. Multi-agent systems is a
new and emerging field. Other research often con-
cerns communication between agents, but the goal is
always to model real world behavior for social science.

It has been determined that the program meets
the design criteria in the areas in which it was im-
plemented. The graphs are what answer many of the
experimental questions. Descriptions of the popula-
tion growth graph refer to the section on population
growth in Appendix B. In general it follows the shape
of logistic graphs which are proven to be a fairly accu-
rate representation of population growth. Growth is
slow when the population is close to zero and close to
the carrying capacity, and growth is highest at half of
the carrying capacity. The few anomalies reveal cer-

tain aspects of the simulation. The initial portion of
slow growth is smaller than the final portion because
the population begins with three individuals instead
of one (but starting with one agent would not com-
pletely remedy this). The oscillations near carrying
capacity come from the age limit of agents. It takes
longer for the population to decrease due to dead
agents than it does for it to react to the added agents.
The oscillations decrease over time and will eventu-
ally disappear. At about half of carrying capacity the
line begins to become jagged instead of fairly straight
like it was earlier in the simulation. This is a result of
the heterogeneous population. In the beginning even
agents with low vision and high metabolism (less fit
agents) have room to survive in the regions of abun-
dant sugar. As the environment fills up only better
fit agents can survive on the fringes, areas with less
sugar, so many added agents die quickly. The effects
are even more pronounced as population approaches
carrying capacity. The graph has even more informa-
tion to offer when seasons are included. The spikes
in the graph represent the winters. The spikes alter-
nate in intensity because the northern winter is more
severe removing more high desnity sugar locations.
It was determined that the environmental carrying
capacity was about 750 and the carrying capacity for
a single hemisphere was 375. The forced migration
due to continual winters prevents the carrying capac-
ity from being reached. The graph has a logarithmic
shape, typical of population graphs. Also there are
oscillations as the population numbers level out.
Descriptions of population inequality refer to the
graph in the wealth distribution graph in Appendix
B. At first a bar graph was used to represent wealth
distribution, but it was replaced with the Lorenz
curve. Both conform to the graphs in Axtell and
Epstein’s book. They show that there are very few
wealthy agents (agents with a lot of harvested sugar
stored) and many poor agents. In this sense the pop-
ulation is pretty unequal. The Gini coefficient is a
numerical representation of this phenomenon. A co-
efficient of zero represents perfect equality and one
represents perfect inequality (one agent has all the
wealth). The number is just over .5 showing that the
Sugarscape population is closer to perfect inequal-
ity than to perfect equality. The wealth distribution

graph shows unreasonably high equality among the
agents. The value of the Gini coefficient is higher
than a similar real world number would be. Also,
it is almost impossible to determine actual wealth
in America, so income is studied more often. As
the population size approaches zero, changes in the
Lorenz curve are much more frequent because a single
agent has more of an effect.

See Appendix B for a display showing Schelling seg-
regation and winters. There is significant segregation
at this point. The environment does split in half as
was expected. Sometimes however, one color of agent
can have a majority on both high density sugar loca-
tions and exclude the other color to the fringes of the
Sugarscape where fewer agents can live. When win-
ters are included, the color of agent which predomi-
nates the lower hemisphere (which undergoes winter
first) will only have a few agents after the first agent
and will eventually die out completely. Asexual re-
production of same-color agents prevents new agents
from getting inside areas dominated by one color or
the other.

Both winters and segregation are intricately re-
lated. Appendix B shows gradual hemispheric win-
ters as well. When winters do not force agents to
migrate and mix, the two different colors of agents
are almost completely segregated. Each hemisphere
has one circle of high density sugar, each of which be-
comes occupied by a different colored agent. And be-
cause winters separate agents into the different hemi-
spheres, one group of agents will always eventually
die out as long as there are regular winters. The grad-
ual winters also create a distinct migration pattern.
First the high density sugar is harvested and agents
move out in all directions. Then the agents move
towards the equator. When the environment is not
crowded there is little segregation. This is because
locations where an agent won’t be in the majority
compared to his neighbors won’t be chosen, but with
fewer agents there are more alternatives. One sugar
grows each turn. Metabolism is how much sugar an
agent must eat to survive. Once an agent is sur-
rounded, it won’t move and will harvest one sugar
per turn until it dies after some time depending on
its metabolism.

5 Further Research

Further research could include implementing other
aspects of the Sugarscape, as described by Axtell and
Epstein. Possible topics include sexual reproduction
with inheritance or the trade of spice. In addition,
other studies of artificial societies (like Schelling’s
segregation model) could be analyzed using the Sug-
arscape as the base environment. Changing the range
of values in the heterogeneous aspects of the agents
yields different results in the graphs. This could be
attempted to be quantified. Combat could be imple-
mented, a desire expressed by Tony Bigbee. Geno-
cide, as described in “Seeing Around Corners” could
be implemented. The manner in which agents are
added to the environment could be done according
to other functions to show other phenomena, like ex-
ponential growth.In addition to changing the envi-
ronment, the method of determining social equality
could be determined using some of the different meth-
ods described in “The Theoretical Basics of Popular
Inequality Measures.” Lastly, the Sugarscape could
be implemented in other languages, like assembly for
example.

6 Bibliography

Cioffi-Revilla, Claudio, J. Daniel Rogers, and Maciej
Latek. ”The MASON HouseholdWorld of Nomads.”
2nd World Congress on Social Simulation (2008). 10
June 2008 < hitp : //portal.acm.org >.

Eiben, A. E., et al. “Comparing Multicast and
Newscast Communication in Evolving Agent Soci-
eties.” Department of Artificial Intelligence at Vrije
Universiteit Amsterdam. June 25, 2005.

Epstein, Joshua M. and Robert Axtell. Growing
Artificial Societies: Social Sciences from the Bot-
tom Up. Washington, D.C.: The Brookings Institute
Press, 1996.

Gigliotta, Onofrio. “Groups of Agents with a
Leader.” Journal of Artificial Societies and Social
Simulation 10 (2007). 30 Jan. 2007 < http
//jasss.soc.surrey.ac.uk/10/4/1.html >.

Hale, Travis. “The Theoretical Basics of Popular
Inequality Measures.” University of Texas. < http :

//utip.gov.utexas.edu/tutorials/theopasic;neq,easures.doc >.
Moon, II-Chun and Kathleen M. Carley. “Self-
Organizing Social and Spatial Networks under What-
if Scenarios.” Carnegie Mellon University School of
Computer Science. May 14, 2007.
Rauch, Jonathan. “Seeing Around Corners.” The
Atlantic Monthly. Apr. 2002. 35-48.
Schelling, Thomas C. Micromotives and Macrobe-
havior. New York: W. W. Norton & Company, Inc.,
1978.

7 Appendices

Appendice A
Code
agent move method

def move

#Possible locations

choices = [nil,nil,nil,nil]

#Choices are invalid if there is an agent in
choices[0] = [@@env[@posY+1] [@posX],-1,0] if
choices[1] [@@env [@posY-1] [@posX],-1,0] if
choices[2] [@@env [@posY] [@posX+1],-1,0] if
choices[3] [@@env [@posY] [@posX-1],-1,0] if

the neighbori
OposY+1 < QQc¢
@posY-1 >= 0
OposX+1 < @Qe
@posX-1 >= 0

#Choices are
if $schelling
for i in 0...4 do

choices[i] = nil if !validNeighbor(choices[i])
end

end

also invalid if they don’t follow Schelling s

are valid
[nil,nil,nil,nill

#Returns if no moves
return if choices ==

#Looks out as far as vision permits in each of the four ce
#Stores the adjacent location in that direction, the max s
for k in 1..0vision do

break if choices[0] == nil

break if @posY+k >= @Qenv.length

if @Q@env[@posY+k] [@posX] .sugarquant > choices[0] [1]
choices[0] = [@@env[@posY+1] [@posX],@Q@env [@posY+k] [@posX].
end

end #Displays population size over time on the graph canvas

for k in 1..0@vision do def drawPop
break if choices[1] == nil #Resets the graph
break if @posY-k < 0O $graph.delete(:all)

if @@env[@posY-k] [@posX].sugarquant > choices[1] [1]
choices[1] = [@@env[@posY-1] [@posX],@Cenv [@posibidu®pusiie s myat cqreext , k]

end TkcLine.new($graph,40,40,40, $w-40)

end TkcLine.new($graph,40, $w-40, $w-40, $w-40)

for k in 1..@vision do TkcText.new($graph, $w/2,30, :text=>"Population levels over
break if choices[2] == nil TkcText .new ($graph,10,$w/2, : text=>"P\no\np\n \nl\ne\nv\ne\
break if @posX+k >= QQenv.length TkcText.new ($graph, $w/2,$w-10, : text=>"Time", :font=>[’Helve

if @@env[@posX+k] [@posX].sugarquant > choices[2] [1]
choices[2] = [@@env[@posY] [@posX+1],@C@env [@posilyl@pes Xshkjasgigatymamipklation array connecting values wit

end for n in 1...popLength do

end #Stops if there are less population values than the most t
for k in 1..@vision do break if getPop[n] == nil

break if choices[3] == nil popr = $RBpopulation[0]

break if @posX-k >= @Qenv.length popb = $RBpopulation[1]

if @@env[@posX-k] [@posX] .sugarquant > choices[BdMine.new($graph,50+((n-1)*400/$popLength),
choices[3] = [@Qenv[@posY] [@posX-1],0Q@env [@posil{pochirklQ@G rgaapmbmtl,k/maxPop ,50+n*400/$popLength , $w-40-

end TkcLine.new ($graph,50+((n-1)*400/$popLength) ,

end $w-40- ($w-100) *popb [n-1] /maxPop, 50+n*400/$popLength , $w-40-
TkcLine.new($graph,50+((n-1)*400/$popLength) , $w-40- ($w-10(

#Removes nil choices and sorts end

choices = choices.compact #Adds an oval to the end of the line

choices.sort! {Ix,yl y[1] <=> x[1]} TkcOval.new ($graph,50+n*400/$popLength-2,

$w-40- ($w-100) *popr [-1] /maxPop-2,50+n*400/$popLength+2, $uw-
#Removes locations with less sugar than the beRtcOwahtien($graph,50+n*400/$popLlength-2,

while choices[-1][1] != choices[0] [1] $w-40-($w-100) *popb [-1] /maxPop-2,50+n*400/$popLength+2, $w-
choices.pop TkcOval.new($graph,50+n*400/$popLength-2, $w—40- ($w—100) *ge
end

#Adds values to the axes and at the end of the line
choices.sort! {l|x,yl x[-1] <=> y[-1]1} tinit = getStep-getPop.length
while choices[-1][-1] != choices[0] [-1] TkcText.new($graph,40,$w-30, : text=>"#{tinit}")
choices.pop TkcText .new($graph,50+n*400/$popLength, $w-30, : text=>"#{get
end TkcText.new($graph, 25,60, : text=>"#{maxPop}")

TkcText .new ($graph, 75+n*400/$popLength-2, $w-40- ($w-100) *pc
#Randomly picks a location of the best one or ToaBeposssab(fgrams, 75+n*400/$popLlength-2, $w-40- ($w-100) *pc

i = rand(choices.length) TkcText.new ($graph, 75+n*400/$popLength-2, $w-40- ($w-100) *ge
return if choices[i] [0] == nil TkcText .new($graph, 25, $w-40, : text=>"0")
@posX = choices[i] [0] .posX end

@posY = choices[i] [0] .posY
Lorenz curve graphing method
end
#Displays the Lorenz curve for wealth distribution on the
population graphing method def drawWealth

end

#Resets the graph if $RBwealths[1].length > 1
$graph.delete(:all) for n in 1...$RBwealths[1].length do
countb = [countb[1],countb[1]+$RBwealths[1] [n]]
#Draws titles and axes TkcLine.new ($graph,40+(n-1) *xb, $w-40-countb [0] *yb,40+n*xb,

TkcLine.new($graph,40,60,40,$w-40, :arrow=>:firgi)iArb += (countb[0] + 0.5 * (countb[1]-countb[0]))*dxb*c
TkcLine.new($graph,40, $w-40, $w-40, $w-40, :arrowerd last)
TkcText .new($graph,$w/2,30, :text=>"Wealth Distaridbution",:font=>[’Helvetica’,15,’bold’])
TkcText .new($graph,10,$w/2, :text=>"%\n \no\nf\for\mi\ire \ha\midaitths."Lerfgrit=d Helvetica’,10, >bold’])
TkcText .new ($graph, $w/2,$w-10, : text=>"}, of Popudati on"[,cdumtER][,¢minetilaredDtldill])

TkcLine.new ($graph,40+(n-1) *x,$w-40-count [0] *y,40+n*x , w4
#Creates local copies of the variables from theimsidmletitcaount[0] + 0.5 * (count[1]-count [0]))*dx*dy
wealths = getWealths end
totalW = getTotalW

#Adds values to axes and displays calculated Gini coeffici
#Variables representing distance between pointBkdPaxttheewli®giaph,30,$w-30, text => "0%")

x = 400.0/(wealths.length-1) TkcText.new ($graph,440,$w-25, :text => "100%\t (#{getPop[-1]
y = 400.0/totalW TkcText.new($graph,440,$w-15, :text => "\t (#{$RBpopulation|
xr = 400.0/($RBwealths[0] .1length-1) TkcText.new($graph,440,$w-5, :text => "\t (#{$RBpopulation[1
yr = 400.0/$RBtotalW[0]

xb = 400.0/($RBwealths[1] .length-1) TkcText .new($graph, 40,15, :text => "100%")

yb = 400.0/$RBtotalW[1] TkcText .new($graph, 40,30, :text => "(#{totalW})")
#Variables representing distance between pointBkdPe:ctlmendeher dite, 8ind0 cordft cent(#{$RBtotalW[0]}) ", : £il
dx = 1.0/(wealths.length-1) TkcText.new($graph,40,50, :text => " (#{$RBtotalW[1]})", :fil
dy = 1.0/totalW

dxr = 1.0/($RBwealths[0].length-1) TkcText .new($graph, 150,150, : text=>"Gini coefficient:\nJf"
dyr = 1.0/$RBtotalW[0] if $RBwealths[0].length > 1

dxb = 1.0/($RBwealths[1].length-1) TkcText .new($graph, 150,200, : text=>"Gini coefficient:\njf"
dyb = 1.0/$RBtotalW[1] else

TkcText .new($graph, 150,200, :text=>"Gini coefficient:\n-",:
#Gini coefficient variable which represents arexad between Lorenz curve and line of slope one

giniAr = 0 if $RBwealths[1].length > 1
giniArr = 0 TkcText .new($graph, 150,250, :text=>"Gini coefficient:\njf"
giniArb = 0 else

TkcText.new($graph, 150,250, :text=>"Gini coefficient:\n-",:
#Cycles through array of wealths connecting wealdh values by line and adding to the Gini area
count = [0,0] end
countr = [0,0]
countb = [0,0]

if $RBwealths[0].length > 1

for n in 1...$RBwealths[0].length do

countr = [countr[1],countr[1]+$RBwealths[0] [n]]
TkcLine.new($graph,40+(n-1) *xr, $w-40-countr [0] *yr,40+n*xr,$w-40-countr [1] *yr, :£ill=>’red’)
giniArr += (countr[0] + 0.5 * (countr[1]-countr[0]))*dxr*dyr

end

Appendice B
Environment and Graphs

5 T TGRS =)
The Sug; - Graphical

Population levels over time

730
AM 669

W 558
"

—n<n=— Tom

/

J M‘

S

082
Time:

e o 80 .
. L
oy | e+ | st | superoez sototingeott | yntrsott | changograh |

Figure 1: GUI during base case (no segregation/winters)

Figure 2: Schelling Figure 3: hemispherical

segregation gradual winters
fwzuﬁ%% Wealth Distribution Population levels over time
SpgTeient: {
. i |
: ghrztﬁ%%mcmm: : ﬁ T‘J J /\ 251
f
\:V gi.iansi_,%(:%mcient: : 'ﬁ
f / .! "
| J
\ / i
/
//)/’ \/"’VM
0 \'\/“‘(

0% 100% (53) o 2090
% of Population {gg} Time

Figure 4: wealth distribution Figure 5: population growth
with Gini coefficients with oscillation from winters

