
Computer Systems Research Project
Java Decompiler

Joshua Cranmer

November 12, 2007

Abstract

This project is a decompiler capable of processing outputted Java
bytecode into fully-recompilable and functionally-equivalent source
code. Several people could benefit from being able to decompile source
code, including potentially large companies.

Keywords: decompiler, static analysis, reverse engineering

1 Introduction

It is very commonly asked if it is possible to get working source code from
the executable binaries, and the most common replies are along the lines of
“It’s impossible,” often including references to turning hamburgers to cows
or similar. These replies are, simply put, false in every way. Compiling is not
anything like turning cows to hamburgers. The latter process involves ripping
out large portions of the cow and recombining much of the rest, in essence,
fundamentally changing every aspect of the cow. Compiling, instead, only
discards structural information and rewrites the rest in a way that a processor
can understand better. Executable code is essentially source code without
the structure.

The primary problem with decompiling is that the problem tends to be
ill-defined. Executable binaries represent the main input,1 the other inputs

1There are some decompilers that might use other inputs as bases, the most common
being assembly code. This will be treated later.

1



being auxiliary information that can help the decompiler or mere stylistic
guidelines. But the output is hard to define. Three definitions quickly come
to mind: the original source code used to compile the binary; a source code
that will, fed into the original compiler with the same options, produce the
same binary code; and source code, when fed into a compiler, will produce
not necessarily identical but functionally equivalent source code. The first
one is obviously impossible, the second one (surprisingly) is often unfeasible
or undesirable, so the latter is what most people focus on.

This project’s primary goal is to be able to produce fully recompilable
Java code given the class files input into a Java virtual machine. The original
versions will focus on being able to handle only the output of the most recent
Java compiler, Sun Java 6 SE, in unoptimized format. Time permitting, sup-
port for handling older versions (mostly limited to the more complex finally

handling) will be added. Further improvements to handling optimized code
and code not produced from any standard Sun Java compiler will be next,
followed by improvements for handling entire JAR or ZIP files at once.

2 Background

In the realm of computer code, there are several layers of code. Amongst the
so-called high-level programming languages (like Java, C#, Python, or LISP),
there are variations in expressiveness and readability. These variations make
ranking the languages in any hierarchal order next to impossible. Java, for
example, as string capabilities that far outreach those of LISP, but LISP is
more effective at dynamic interpretation than Java. However, it is possible
to classify these languages by levels of expressiveness—loosely defined, how
much the language impedes certain tasks. This same metric can be applied
to lower-level languages and even executable code representations.

In this hierarchy of languages by expressiveness, the most expressive lan-
guages would be machine code as executed by a native processor, such as
Intel’s i686 instruction set or the instructions for a MIPS processor. Cor-
responding almost exclusively one-to-one with these ‘languages’ are the re-
spective assembly languages, mostly a series of mnemonics for the actual
instructions (although certain operations are prohibited in the assembly lan-
guage that are permitted in the machine code). Slightly less expressive are
various types of portable assembly, like GCC’s RTL. Older languages like
C or FORTRAN are the next level, representing easier representations of

2



Machine code Assembly Source code
Machine code Porting Disassembling Decompiling

Assembly Assembling Porting Depends on author
Source code Compiling Depends on author Source code trans-

formation

Table 1: Nomenclature of various transformations

the same information with a thin veil of type-checking. In the next tier are
bytecode languages, like that of Java or Python, which retain significantly
more structure and have much more intensive sanity checks. In the top tier
lies many of the modern languages, with complex features like static type-
checking or stack-unrolling exception handling.

This hierarchy is generally collapsed into four segments: machine code,
bytecode,2 assembly, and source code. Transforming code between these var-
ious classes has different names, specified in Table ??. Conversions between
source code and assembly are not typically used, so their common names will
vary considerably, mostly depending on whether or not the context dictates
where assembly falls on the line between machine code and source code. In
terms of decompiling, determining the assembly from machine code is much
more difficult than the source code from assembly, so these lines are more
viewed as source level analyses, albeit more difficult than the more common
ones. [?, ?]

Several examples of decompilers exist at the present time. In the early
days of Java, several decompilers were written that took advantage of the ease
of decompiling bytecode, prompting several articles to be written detailing
the scope of issue, including fooling decompilers. Most of these early decom-
pilers are helpless at modern code, and several no longer exist. Furthermore,
very few decompilers exist for non-Java programs. A search of SourceForge
revealed one Flash decompiler, a Python decompiler, one C decompiler inca-
pable of decompiling even simple code (although it is innovative in its usage),
Boomerang (another C decompiler), and several defunct Java decompilers.
Aggregating all together, there are currently only four decompilers of note:

• Jad, the best Java decompiler currently out there (although closed

2In most circumstances, bytecode and machine code are considered identical classes.
The distinction is only important when classifying difficulties between various transforma-
tions.

3



source and written in C).

• Boomerang,[?] the best open-source C decompiler and the only one
easily obtainable.

• JODE,[?] the best open-source Java decompiler, but seems to be more-
or-less abandonware.

• Hex-Rays, a decompiler that plugs into the popular IDA program.
Closed source, expensive, and requires another expensive program to
use.

3 Class File Parsing and Signature Handling

The first stage of the decompiler is to parse the incoming files. Most of the
internal representations are handled in the info package. Internally, the class
files are handled through a service architecture: a central class, ClassPool,
contains a pool that manages the various known classes. Class files are given
to this pool by registering various ClassSource interfaces that can produce
an input stream for a requested class. The main shell registers a source based
on the files passed into the command line arguments and then proceeds to
find outputs for all of these classes, by requesting fully-decompiled versions
from ClassPool.

Whenever a class (internally represented using ClassInfo references) is
requested, a level of decompilation is requested. If the class has not been
handled yet, the class pool grabs the input stream and starts parsing it to
the required level. If it has been handled, the internal decompilation level
is compared to the requested level and proceeds until the requested level
is reached. For all but the last two levels (PROCESSED and FILTERED), the
stream is parsed to the given point. The possible levels to parse to are
the header information, constant pool, class metadata, fields, methods, and
annotations; all parsing is done by the ClassParser class, which has intimate
access to the internals of ClassInfo.

Should the parsing run into any problem that violates the Java VM speci-
fication, it will try to continue whenever possible, logging a verification error.
Examples of these errors are mismatched magic numbers, illegal flags, and
improper versioning. Should continuation prove impossible, the decompiler

4



stops attempting to parse the class, printing out an error. An example would
be illegal constant pool tags; other examples include I/O errors.

When the processing stage is reached, the input stream is discarded to
conserve memory and the class then focuses on trying to make sense out of
attributes. Signatures are attached to methods and fields at this stage, and
code is actually physically decompiled here. Signatures are not parsed here,
but are lazily evaluated when the class is being printed.

The first prototypes of the decompiler ignored the Code attribute (where
all the instructions are actually stored) and focused on printing out the full
signatures, including generics. These signatures are decoded through the
hand-written SignatureParser class. This class is currently not optimized
for speed: it switches from using a StringBuilder to using a String several
times, a process which can incur very large overhead costs. This class has
five entry points; two for the internal field and method types and three for
the stored generic signatures. It is also capable of returning full generic
signatures, as example ?? shows. The string on the bottom is the actual
signature stored in the class file while the above code is the returned output
of the decompiler.

abstract class Gener icsTest {
public abstract <T extends java . lang . Object , E extends

java . lang . Throwable> T foobar (T var 0 ) throws E;
}

<T:Ljava/lang/Object;E:Ljava/lang/Throwable;>(TT;)TT;^TE;

Example 1: Generic method example

References

[1] Boomerang. Vers 0.3 alpha 31 Oct. 2007
http://boomerang.sourceforge.net/download.php

[2] Emmerik, Mike Van. “PhD Confirmation Report: Type Infer-
ence Based Decompilation.” U of Queenland, 2003. 31 Oct 2007
http://www.itee.uq.edu.au/ emmerik/ confirmation/confirmation.ps.gz

5



[3] Guilfanov, Ilfak. “Portable output for Assembler.” We-
blog entry. 24 Apr. 2006. Hex Blog. 30 Oct. 2007
http://hexblog.com/2006/04/portable output for assembler.html

[4] Java Optimize and Decompile Environment (JODE). Vers. 1.1.1. 31
Oct. 2007 http://jode.sourceforge.net/download.html

6


