
Computer Systems Research Project
Java Decompiler

Joshua Cranmer

January 18, 2008

Abstract

This project is a decompiler capable of processing outputted Java
bytecode into fully-recompilable and functionally-equivalent source
code. Several people could benefit from being able to decompile source
code, including potentially large companies.

Keywords: decompiler, static analysis, reverse engineering

1 Introduction

It is very commonly asked if it is possible to get working source code from
the executable binaries, and the most common replies are along the lines of
“It’s impossible,” often including references to turning hamburgers to cows
or similar. These replies are, simply put, false in every way. Compiling is not
anything like turning cows to hamburgers. The latter process involves ripping
out large portions of the cow and recombining much of the rest, in essence,
fundamentally changing every aspect of the cow. Compiling, instead, only
discards structural information and rewrites the rest in a way that a processor
can understand better. Executable code is essentially source code without
the structure.

The primary problem with decompiling is that the problem tends to be
ill-defined. Executable binaries represent the main input,1 the other inputs

1There are some decompilers that might use other inputs as bases, the most common
being assembly code. This will be treated later.

1

being auxiliary information that can help the decompiler or mere stylistic
guidelines. But the output is hard to define. Three definitions quickly come
to mind: the original source code used to compile the binary; a source code
that will, fed into the original compiler with the same options, produce the
same binary code; and source code, when fed into a compiler, will produce
not necessarily identical but functionally equivalent source code. The first
one is obviously impossible, the second one (surprisingly) is often unfeasible
or undesirable, so the latter is what most people focus on.

This project’s primary goal is to be able to produce fully recompilable
Java code given the class files input into a Java virtual machine. The original
versions will focus on being able to handle only the output of the most recent
Java compiler, Sun Java 6 SE, in unoptimized format. Time permitting, sup-
port for handling older versions (mostly limited to the more complex finally

handling) will be added. Further improvements to handling optimized code
and code not produced from any standard Sun Java compiler will be next,
followed by improvements for handling entire JAR or ZIP files at once.

2 Background

In the realm of computer code, there are several layers of code. Amongst the
so-called high-level programming languages (like Java, C#, Python, or LISP),
there are variations in expressiveness and readability. These variations make
ranking the languages in any hierarchal order next to impossible. Java, for
example, as string capabilities that far outreach those of LISP, but LISP is
more effective at dynamic interpretation than Java. However, it is possible
to classify these languages by levels of expressiveness—loosely defined, how
much the language impedes certain tasks. This same metric can be applied
to lower-level languages and even executable code representations.

In this hierarchy of languages by expressiveness, the most expressive lan-
guages would be machine code as executed by a native processor, such as
Intel’s i686 instruction set or the instructions for a MIPS processor. Cor-
responding almost exclusively one-to-one with these ‘languages’ are the re-
spective assembly languages, mostly a series of mnemonics for the actual
instructions (although certain operations are prohibited in the assembly lan-
guage that are permitted in the machine code). Slightly less expressive are
various types of portable assembly, like GCC’s RTL. Older languages like
C or FORTRAN are the next level, representing easier representations of

2

Machine code Assembly Source code
Machine code Porting Disassembling Decompiling

Assembly Assembling Porting Depends on author
Source code Compiling Depends on author Source code trans-

formation

Table 1: Nomenclature of various transformations

the same information with a thin veil of type-checking. In the next tier are
bytecode languages, like that of Java or Python, which retain significantly
more structure and have much more intensive sanity checks. In the top tier
lies many of the modern languages, with complex features like static type-
checking or stack-unrolling exception handling.

This hierarchy is generally collapsed into four segments: machine code,
bytecode,2 assembly, and source code. Transforming code between these
various classes has different names, specified in Table 1. Conversions between
source code and assembly are not typically used, so their common names will
vary considerably, mostly depending on whether or not the context dictates
where assembly falls on the line between machine code and source code. In
terms of decompiling, determining the assembly from machine code is much
more difficult than the source code from assembly, so these lines are more
viewed as source level analyses, albeit more difficult than the more common
ones. [2, 3]

Several examples of decompilers exist at the present time. In the early
days of Java, several decompilers were written that took advantage of the ease
of decompiling bytecode, prompting several articles to be written detailing
the scope of issue, including fooling decompilers. Most of these early decom-
pilers are helpless at modern code, and several no longer exist. Furthermore,
very few decompilers exist for non-Java programs. A search of SourceForge
revealed one Flash decompiler, a Python decompiler, one C decompiler inca-
pable of decompiling even simple code (although it is innovative in its usage),
Boomerang (another C decompiler), and several defunct Java decompilers.
Aggregating all together, there are currently only four decompilers of note:

• Jad, the best Java decompiler currently out there (although closed

2In most circumstances, bytecode and machine code are considered identical classes.
The distinction is only important when classifying difficulties between various transforma-
tions.

3

source and written in C).

• Boomerang,[1] the best open-source C decompiler and the only one
easily obtainable.

• JODE,[4] the best open-source Java decompiler, but seems to be more-
or-less abandonware.

• Hex-Rays, a decompiler that plugs into the popular IDA program.
Closed source, expensive, and requires another expensive program to
use.

3 Class File Parsing and Signature Handling

The first stage of the decompiler is to parse the incoming files. Most of the
internal representations are handled in the info package. Internally, the class
files are handled through a service architecture: a central class, ClassPool,
contains a pool that manages the various known classes. Class files are given
to this pool by registering various ClassSource interfaces that can produce
an input stream for a requested class. The main shell registers a source based
on the files passed into the command line arguments and then proceeds to
find outputs for all of these classes, by requesting fully-decompiled versions
from ClassPool.

Whenever a class (internally represented using ClassInfo references) is
requested, a level of decompilation is requested. If the class has not been
handled yet, the class pool grabs the input stream and starts parsing it to
the required level. If it has been handled, the internal decompilation level
is compared to the requested level and proceeds until the requested level
is reached. For all but the last two levels (PROCESSED and FILTERED), the
stream is parsed to the given point. The possible levels to parse to are
the header information, constant pool, class metadata, fields, methods, and
annotations; all parsing is done by the ClassParser class, which has intimate
access to the internals of ClassInfo.

Should the parsing run into any problem that violates the Java VM speci-
fication, it will try to continue whenever possible, logging a verification error.
Examples of these errors are mismatched magic numbers, illegal flags, and
improper versioning. Should continuation prove impossible, the decompiler

4

stops attempting to parse the class, printing out an error. An example would
be illegal constant pool tags; other examples include I/O errors.

When the processing stage is reached, the input stream is discarded to
conserve memory and the class then focuses on trying to make sense out of
attributes. Signatures are attached to methods and fields at this stage, and
code is actually physically decompiled here. Signatures are not parsed here,
but are lazily evaluated when the class is being printed.

The first prototypes of the decompiler ignored the Code attribute (where
all the instructions are actually stored) and focused on printing out the full
signatures, including generics. These signatures are decoded through the
hand-written SignatureParser class. This class is currently not optimized
for speed: it switches from using a StringBuilder to using a String several
times, a process which can incur very large overhead costs. This class has
five entry points; two for the internal field and method types and three for
the stored generic signatures. It is also capable of returning full generic
signatures, as example 1 shows. The string on the bottom is the actual
signature stored in the class file while the above code is the returned output
of the decompiler.

abstract class Gener icsTest {
public abstract <T extends java . lang . Object , E extends

java . lang . Throwable> T foobar (T var 0) throws E;
}

<T:Ljava/lang/Object;E:Ljava/lang/Throwable;>(TT;)TT;^TE;

Example 1: Generic method example

Later prototypes developed the full capability to correctly reproduce an-
notations that were retained in the class file. Annotations have some confus-
ing rules: in particular, an annotation element cannot have a type of Object
or multidimensional arrays. The decompiler can decompile both the declara-
tion of an annotation type and the use of an annotation on classes, methods,
method parameters, and fields. Annotations in other places are not passed
down to the source code, so their proper decompilation is impossible.

5

4 Static Stack Analysis

The Java VM specification specifies a total of 202 opcodes, as well as reserving
three more (a breakpoint and two implementation-defined opcodes). Of this
list of 202, 6 are not used in the Java 5 or Java 6 compiler. The opcodes jsr
and ret were deprecated because of their incompatibility with the new stack-
frame verification; goto w and jsr w are 4-byte instructions that are unused
since code is limited to 2-bytes; nop is unused for obvious reasons; and, finally,
invokedynamic was created for the ease of dynamic programming languages,
and its semantics are not concisely represented in Java syntax.

The Java VM is ultimately stack-based. An array of local variables is
maintained, and operands are pushed onto or off of the stack by the various
operators. Other bytecode-interpreted languages have similar semantics, but
most modern processors are register-based, where the operator declares which
registers it operates on. This stack makes decompilation easier, since the
stack starts empty and is required to end empty, unlike real processors where
the registers may be used as arguments or return parameters.

Of the previously mentioned 202 opcodes, many are shortcuts for what
could be larger opcodes. iload 1, for example, is semantically identical to
iload 1, both of which are very close to aload 1 or even istore 1. Taking
advantage of these similarities, the opcodes are simplified into the following
22 classes:

LoadConstantInstruction Push a constant value onto the stack

LoadStoreInstruction Push a local variable to the stack or pop the stack
to a local variable

ArrayLoadStoreInstruction Store or load a variable to an array

PopInstruction Pops one or two values from the stack

DupInstruction Duplicates potentially several values on the stack

SwapInstruction Swaps the top two values on the stack

ArithmeticInstruction Performs an arithmetic operation on the top one
or two variables on the stack

CompareInstruction Performs a comparison on the top two variables on
the stack

6

IncrementInstruction Increments an integer by a specified count

PrimitiveConversionInstruction Converts between the primitive types

IfInstruction Conditionally jumps based on a variety of conditions

GotoInstruction Unconditionally jumps

JSRInstruction Unconditionally jumps, but pushes the current address on
the stack

RetInstruction Jumps to the address popped from the stack

SwitchInstruction Executes a switch instruction

ReturnInstruction Returns control from the function

FieldAccessInstruction Accesses a field of a class

InvokeInstruction Invokes a method

NewInstruction Instantiates a new class

ArrayNewInstruction Instantiates a new array

ArrayLength Pushes the length of the array onto the stack

ThrowInstruction Throws an exception

CastInstruction Checks the type of a class

MonitorInstruction Enters or exits a synchronization monitor

Every opcode, except nop, goto, and goto w, involves operating on the
stack. The first stage of decompilation is to therefore analyze the stack.
Analysis of the stack involves determining a few components: ensuring that
the VM types (integer, float, long, double, and object) are proper at all times,
construction of a few invariants for later analysis, and the determination of
variable typing and scope. All three operations are carried out simultane-
ously in the first analytic pass through the bytecode (the initial construction
technically counts as a pass, although the only analysis it performs is the
insertion of pseudo-bytecodes and the removal of GotoInstruction. The
first operation—VM typing—is trivial and carried out normally as part of

7

the VM’s bytecode analysis; it is the last two operations that present the
problems.

The main invariant that is needed for further decompilation is the invari-
ant that any instruction with two parent nodes should have an empty stack.
This requirement makes the decompilation of many of the opcodes simpler
by ensuring that the operand can only be one thing and not several. For the
most part, Java code already satisfies this assumption, with one exception:
the ternary operator. Since the bytecode is more liberal in this aspect than
Java permits, some sort of heuristic needs to be used to determine whether
or not this branch pair is a conditional expression or an optimized branch.

4.1 Variable Analysis

Variable typing and scoping is the most difficult aspect of decompiling, and
it is a problem shared by all types of decompilers, be they native-code de-
compilers or bytecode decompilers. An interesting aspect is that if either
type or scope is known, the other becomes simple to find, whereas finding
both together is much harder.

The harder problem by far is scoping. To see its difficulty, one needs to
learn a little about the structure of the Sun Java compiler. Each variable
is mapped to one spot in the local array buffer, or two if it is a long or
double. This spot is reserved for it from the point of declaration to the end
of its scope. The näıve implementation would be to rely on the scope of
control structures to dictate variable scope, but this can lead to some over-
scoping of variables. Even worse is the fact that Java allows the introduction
of arbitrary variable scope. Therefore, a decompiler cannot rely solely on
control structures even if code only compiled from the Sun Java compiler
was input (there is one simplifying caveat: the argument variables’ scope is
that of the entire program, so the Sun Java compiler will never reuse these
slots).

The solution to variable scoping is by using a form known as SSA, or
static single assignment. More commonly known for its use in compilers,
SSA form is a modified form of code where each variable is limited to only
one assignment.

Currently, only a mild portion of SSA is formed. The stack analyzer is
incapable of handling branches, and control structures with it.

8

5 Post-Decompilation Transformations

Surprisingly, much of Java since Java 1.0 is essentially a hack in terms of
the bytecode. The only real changes to the bytecode are the now-allowed
use of class in the ldc instruction, a slight change in the lookup of the
nonvirtual method lookup, and the deprecation of the jsr, jsr w, and ret

instructions due to the difficulty of verifying them under the new Java 6
stack verification model. Everything since then–including, but not limited
to, generics and inner classes–is merely a compile-time hack, see example 2
for a partial comparison of a case involving enums and inner classes.

public enum EnumTest {
A, B;
private stat ic int f oo = 5 ;
stat ic class Bar {

public St r ing toS t r i ng () {
return I n t eg e r . t oS t r i ng (5) ;

}
]

}

public class EnumTest {
private EnumTest A, B;
private stat ic int f oo = 5 ;
public stat ic int acces s$100 () {

return f oo ;
}

}
public class EnumTest$Bar {

stat ic class Bar {
public St r ing toS t r i ng () {

return I n t eg e r . t oS t r i ng (EnumTest . acce s s$100 ()) ;
}

}
}

Example 2: Simplified example of how some constructs are handled internally

These advanced constructs can be detected by simple analyses. Each

9

synthetic method is not reproduced to output if its existence can be explained
and rectified. So far, no explanations or rectifications are performed.

References

[1] Boomerang. Vers 0.3 alpha 31 Oct. 2007
http://boomerang.sourceforge.net/download.php

[2] Emmerik, Mike Van. “PhD Confirmation Report: Type Infer-
ence Based Decompilation.” U of Queenland, 2003. 31 Oct 2007
http://www.itee.uq.edu.au/ emmerik/ confirmation/confirmation.ps.gz

[3] Guilfanov, Ilfak. “Portable output for Assembler.” We-
blog entry. 24 Apr. 2006. Hex Blog. 30 Oct. 2007
http://hexblog.com/2006/04/portable output for assembler.html

[4] Java Optimize and Decompile Environment (JODE). Vers. 1.1.1. 31
Oct. 2007 http://jode.sourceforge.net/download.html

10

