
Java 6
Decompiler

Abstract

This project aims to create a
decompiler capable of processing
outputted Java 6 bytecode into
fully-recompilable and functionally-
equivalent source code.

Reasons for Decompilation

●Finding bugs in program
●Finding vulnerabilities
●Finding malware
●Compiler code verification
●Comprehending algorithms
●Creating interoperability
●Induce customizability
●Porting code
●Create maintainable source code
●Fixing bugs without patching binaries
●Add features to a program

Procedures and Methods

Joshua Cranmer
TJHSST Computer Systems Lab

2007-2008

The decompiler works in a multi-
phased approach. First, the class
file is fully parsed and stored in
memory. Then, the code execution
bodies are processed through
several transformation filters until
readable source code is produced.
Next, various filters are applied to
make the source code more
readable. Finally, everything is fully
decoded and then printed out into
class files.

Example screenshot of
running code. Note the
use of proper indentation
and (not seen here)
proper 80-character
overflow.

The output inside the
blocks is a dump of the
internal code graph.

