Abstract

Java 6

This project aims to create a
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Reasons for Decompilation Procedures and Methods
*Finding bugs in program The decompiler works in a multi-
*Finding vulnerabilities phased approach. First, the class
*Finding malware file is fully parsed and stored in
*Compiler code verification memory. Then, the code execution
-Comp_rehgndmg algo.rllthms bodies are processed through
*Creating interoperability several transformation filters until
*Induce customizability readable source code is
Porting code produced. Next, various filters are

*Create maintainable source code applied to make the source code

*Fixing bugs without patching binaries more readable. Finally, everything
*Add features to a program is fully decoded and then printed
out into class files.
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