Abstract

Java 6

This project aims to create a

decompiler capable of processing "
outputted Java 6 bytecode into DeCOm pl Ie r
fully-recompilable and Joshua Cranmer
functionally-equivalent source TJHSST Computer Systems Lab
code. 2007-2008

Reasons for Decompilation Procedures and Methods
*Finding bugs in program The decompiler works in a multi-
*Finding vulnerabilities phased approach. First, the class
*Finding malware file is fully parsed and stored in
*Compiler code verification memory. Then, the code execution
-Comp_rehgndmg algo.rllthms bodies are processed through
*Creating interoperability several transformation filters until
*Induce customizability readable source code is
Porting code produced. Next, various filters are

*Create maintainable source code applied to make the source code

*Fixing bugs without patching binaries more readable. Finally, everything
*Add features to a program is fully decoded and then printed
out into class files.

- Example screenshot of

import jawa,util,Hashiap: running code. Note the
import jawa,util,LinkedlList:
import util,logger: use of proper
public final class ClassPool o indentatiOn and (nOt
private static HashMap<String, ClazsInfor classes:
private static LinkedLizt<ClassSource? sources: seen here) F)r()F)EBr EB()_
private ClassPooll) 1 character overflow.
sLpetl )
) Feturn:
public static Classlnfo getClazsiString classMName) o Generic 55i€3r153ttjrf355 dlre
sources. iteratort ) decompiled, as well as
store java,lang,Object, 1 tr]ea rfa(zc)\/ears/ ()f new
Logger,verbosel "Retrieving claszs from source"): _
new HashMap(): \/Eif]fit)IEBES, and the
puttield info.ClassPool,classes : : .
new Linkedlist()s decompilation of certain
ttield info,ClassFool, :
tirn nulls e simple bytecodes.



