
Computer Systems Project Proposal
Java Decompiler

Joshua Cranmer

November 12, 2007

Abstract

This project is a decompiler capable of processing outputted Java
bytecode into fully-recompilable and functionally-equivalent source
code. Several people could benefit from being able to decompile source
code, including potentially large companies.

Keywords: decompiler, static analysis, reverse engineering

1 Introduction

1.1 Scope of Study

This project is designed to write a Java decompiler. At first, the goal will
be to process class files, one at a time, that were generated by the Java SE
6 compiler. Later, the program will be modified to be able to handle whole
JAR or ZIP files at once, and (if time permits) through multithreading to
take advantage of multiple-core processors. It is also planned to support
some of the older compilers, and, hopefully, optimized code as well.

1.2 Type of research

This project is partially applied research and partially pure research: the
goal is to produce a final product, but some of its features may be more
esoteric in their application.

1

2 Background of current research

At this time, there exists several Java decompilers. In the early days of
Java, several decompilers were written that took advantage of the ease of
decompiling bytecode, prompting several articles to be written detailing the
scope of issue, including fooling decompilers. Most of these early decompil-
ers are helpless at modern code, and several no longer exist. Furthermore,
very few decompilers exist for non-Java programs. A search of SourceForge
revealed one Flash decompiler, a Python decompiler, one C decompiler inca-
pable of decompiling even simple code (although it is innovative in its usage),
Boomerang (another C decompiler), and several defunct Java decompilers.
Aggregating all together, there are currently only four decompilers of note:

• Jad, the best Java decompiler currently out there (although closed
source and written in C).

• Boomerang, the best open-source C decompiler and the only one easily
obtainable.

• JODE, the best open-source Java decompiler, but seems to be more-
or-less abandonware.

• Hex-Rays, a decompiler that plugs into the popular IDA program.
Closed source, expensive, and requires another expensive program to
use.

Ilfak Guilfanov, the developer of Hex-Rays, has a blog with several dis-
cussions of automated decompiling and reverse engineering. Since he is using
direct executable code, there is a heavier focus on dealing with non-trivial
compiler optimizations (division of 64-bit numbers is an example), but much
is still relevant for decompiling Java code.

3 Procedures and Methodology

The plan for writing a decompiler is iterative. At each stage, new features,
progressively harder, will be added. So at first, for example, only a simple
function that does nothing will be decompiled. Then functions that call
other functions, will be handled, followed by functions with simple arithmetic
transformations. Control flow will be added on afterwards, handling if/else

2

statements first, followed by while/do-while/for loops and finally loops with
break/continue statements. After that, more complex statements will be
added: the ternary statement, try/catch/finally blocks, switch blocks, and
synchronized statements.

While handling the different levels of decompilation, various filters will
be set it. These filters will transform the source code from compilable to
readable. First, the default return statements at the end of functions would
be removed. Later, default constructors would be excised if unnecessary, and
default static initializers for enums would be eliminated as well. Eventu-
ally, the class files will fully handle inner classes by removing several of the
accessory access$XXX functions.

Testing will consist of a directory of files containing various methods rep-
resenting different constructs to test the code. The testing process will con-
sist of compiling the source code, decompiling it, and comparing the sources.
Once recompilable code is produced, the test will actually recompile the code
and compare the differences in the bytecode. If that proves to be too stress-
ful, the test will merely consist of executing the resulting program to test
functional equivalence. It is expected that for full stress-testing, portions
of the actual Java source code will be used for testing (for example, using
java.awt.Component to test the limits of decompiling large files).

4 Expected results

Decompiling is actually very important in several cases. One statistic says
that approximately 10% of source code is presumed to have been lost; decom-
piling can help recover source code when it is lost from the binary executables.
In addition, decompilation can be used to analyze malware to try and defend
against them. Another case is for reverse engineering closed protocols for
purposes of interoperability. What my project would also fulfill would be
investigation into more extensive type analysis (recovering the generic argu-
ments from the executable code). A final reason for decompiling would be
helpful to large corporations: decompilation could be used to detect patent
and copyright infringement code.

3

