
Exploration of Genetic Algorithms Through
the Iterative Prisoner’s Dilemma

Aaron Dufour
TJHSST

Alexandria, Virginia

November 1, 2007

Abstract

Genetic algorithms are used for many optimization problems to
find a near-optimal solution when finding the optimal solution would
be too time-consuming. Although unable to tell when it has found the
optimal solution, a genetic algorithm works continues until the prob-
ability of having found the optimal solution is sufficiently high. There
are many methods used to perform each step of a genetic algorithm,
but it is not easy to identify which will work best for a specific prob-
lem. The goal of this project is to compare these different methods
through the iterative prisoner’s dilemma, and to hopefully fin which
methods work best generically.

1 Introduction

The prisoner’s dilemma is a problem involving two players. The players
each must decide whether to cooperate with the other or to defect. These
decisions must be made without knowledge of the other player’s decision.
Points are given to each player based on the moves they made. If both players
cooperate, they are each given R points. If one cooperates and the other
defects, the cooperating player receives S points and the defecting player
receives T points. If they both defect, they are each given P points. In order
for it to be a prisoner’s dilemma, the values must follow the inequality T >

1



R > P > S.
In the iterative prisoner’s dilemma, the additional inequality 2R > T + S
must be satisfied. In this scenario, the same thing happens, except that the
players are against each other many times with memories of the past. In this
scenario the best outcome is for both players to cooperate each time, because
the total points given when both cooperate (2R) is greater than the number
of points given if one defects (S + T) and greater than the number of points
if both defect (2P). The problem associated with the iterative prisoner’s
dilemma is to find the rule that should be followed in order to maximize the
number of points received when it participates in this scenario with a variety
of other players.
This is a good problem on which to use a genetic algorithm because there
is no algorithm faster than brute force that has been proven to find the
optimal rule. In my genetic algorithm, I made each solution a collection of
bits that represent whether the player should cooperate or defect given a
past collection of turns. The fitness value for each possible solution is the
number of points it accumulates after going through a set number of turns
with each other possible solution in the population. The methods by which
the each part of the genetic algorithm is done can be changed easily because
each possible solution is a simple string of bits.

2 Background

The iterative prisoner’s dilemma has been studied extensively in the past.
Because the best rule is agreed upon, it is a good case with which to test
genetic algorithms. It has been shown that the best rule is to cooperate on
the first turn, and then do the same thing that the opposing player did on the
previous turn for the rest of the turns. The only exception is if the opposing
player defected the previous turn, there should be a 3% chance for the rule
to tell the player to cooperate instead of following the opposing player. This
rule was found by Robert Axelrod through a series of tournements in which
he invited colleagues to devise rules for the iteratve prisoner’s dilemma, and
then had them all play against each other. Many people have written a
genetic algorithm that solves the iterative prisoner’s dilemma, but I have not
found a case in which this problem was used to study genetic algorithms.

2



3 Development Sections

My program will be able to run a genetic algorithm to find a solution to the
iterative prisoner’s dilemma using many different genetic algorithms meth-
ods. It will be able to take user input to tell it which method to use for
each part of the algorithm, and to set essential constants such as the mu-
tation rate, the number of generation, the size of the population, etc. As
the program runs, it will display a graph showing the fitness of each of the
current solutions. It will also show a graph that shows the average fitness
of each previous generation. Finally, it will output a file with these aver-
age fitness values so that they can again be graphed after the program has
completed the run. I will use averages of the number of generations each
method takes to get to the optimal solution in order to judge the usefulness
of each method. My results will be graphs of how different genetic algorithm
methods compare against each other. This will hopefully aid in the deciding
of which genetic algorithm methods to use by future programmers.

3


