
Exploration of Genetic Algorithms Through the Iterative Prisoner’s

Dilemma

Aaron Dufour
TJHSST

Alexandria, Virginia

February 14, 2008

Abstract

Genetic algorithms are used for many optimization
problems to find a near-optimal solution when
finding the optimal solution would be too time-
consuming. Although unable to tell when it has
found the optimal solution, a genetic algorithm
works continues until the probability of having found
the optimal solution is sufficiently high. There
are many methods used to perform each step of
a genetic algorithm, but it is not easy to identify
which will work best for a specific problem. The goal
of this project is to compare these different meth-
ods through the iterative prisoner’s dilemma, and
to hopefully fin which methods work best generically.

1 Introduction

The prisoner’s dilemma is a problem involving two
players. The players each must decide whether to
cooperate with the other or to defect. These deci-
sions must be made without knowledge of the other
player’s decision. Points are given to each player
based on the moves they made. If both players coop-
erate, they are each given R points. If one cooperates
and the other defects, the cooperating player receives
S points and the defecting player receives T points.
If they both defect, they are each given P points. In
order for it to be a prisoner’s dilemma, the values
must follow the inequality T > R > P > S.

In the iterative prisoner’s dilemma, the additional in-
equality 2R > T + S must be satisfied. In this sce-
nario, the same thing happens, except that the play-
ers are against each other many times with memories
of the past. In this scenario the best outcome is for
both players to cooperate each time, because the to-
tal points given when both cooperate (2R) is greater
than the number of points given if one defects (S +
T) and greater than the number of points if both de-
fect (2P). The problem associated with the iterative
prisoner’s dilemma is to find the rule that should be
followed in order to maximize the number of points
received when it participates in this scenario with a
variety of other players.
This is a good problem on which to use a genetic
algorithm because there is no algorithm faster than
brute force that has been proven to find the optimal
rule. In my genetic algorithm, I made each solution
a collection of bits that represent whether the player
should cooperate or defect given a past collection of
turns. The fitness value for each possible solution
is the number of points it accumulates after going
through a set number of turns with each other pos-
sible solution in the population. The methods by
which the each part of the genetic algorithm is done
can be changed easily because each possible solution
is a simple string of bits.

1



2 Background

The iterative prisoner’s dilemma has been studied ex-
tensively in the past. Because the best rule is agreed
upon, it is a good case with which to test genetic
algorithms. It has been shown that the best rule is
to cooperate on the first turn, and then do the same
thing that the opposing player did on the previous
turn for the rest of the turns. The only exception is if
the opposing player defected the previous turn, there
should be a 3% chance for the rule to tell the player
to cooperate instead of following the opposing player.
This rule was found by Robert Axelrod through a se-
ries of tournements in which he invited colleagues to
devise rules for the iteratve prisoner’s dilemma, and
then had them all play against each other. Many peo-
ple have written a genetic algorithm that solves the
iterative prisoner’s dilemma, but I have not found a
case in which this problem was used to study genetic
algorithms.

3 Development Sections

My program can run a genetic algorithm to find a so-
lution to the iterative prisoner’s dilemma using many
different genetic algorithms methods. It can take user
input to tell it which method to use for each part of
the algorithm, and can set essential constants such
as the mutation rate, the number of generation, the
size of the population, etc. As the program runs, it
displays a graph showing the fitness of each of the cur-
rent solutions. It also shows a graph that shows the
average fitness of each previous generation. Finally,
it outputs a file with these average fitness values so
that they can again be graphed after the program has
completed the run. I will use averages of the number
of generations each method takes to get to the opti-
mal solution in order to judge the usefulness of each
method. Before I can do this, I will need to write a
program that determines when the optimal solution
was reached, because the mutations prevent this from
being a simple preocedure. My results will be graphs
of how different genetic algorithm methods compare
against each other. This will hopefully aid in the de-
ciding of which genetic algorithm methods to use by

future programmers.

2


