
Exploration of Genetic Algorithms Through
the Iterative Prisoner’s Dilemma

Aaron Dufour
TJHSST

Alexandria, Virginia

June 12, 2008

Abstract

Genetic algorithms are used for many optimization problems to
find a near-optimal solution when finding the optimal solution would
be too time-consuming. Although unable to tell when it has found the
optimal solution, a genetic algorithm continues until the probability
of having found the optimal solution is sufficiently high. There are
many methods used to perform each step of a genetic algorithm, but
it is not easy to identify which will work best for a specific problem.
The goal of this project is to compare these different methods through
the iterative prisoner’s dilemma, and to hopefully find which methods
work best generically.

1 Introduction

The prisoner’s dilemma is a problem involving two players. The players
each must decide whether to cooperate with the other or to defect. These
decisions must be made without knowledge of the other player’s decision.
Points are given to each player based on the moves they made. If both players
cooperate, they are each given R points. If one cooperates and the other
defects, the cooperating player receives S points and the defecting player
receives T points. If they both defect, they are each given P points. In order
for it to be a prisoner’s dilemma, the values must follow the inequality T >

1



R > P > S.
In the iterative prisoner’s dilemma, the additional inequality 2R > T + S
must be satisfied. In this scenario, the same thing happens, except that the
players are against each other many times with memories of the past. In this
scenario the best outcome is for both players to cooperate each time, because
the total points given when both cooperate (2R) is greater than the number
of points given if one defects (S + T) and greater than the number of points
if both defect (2P). The problem associated with the iterative prisoner’s
dilemma is to find the rule that should be followed in order to maximize the
number of points received when it participates in this scenario with a variety
of other players.
This is a good problem on which to use a genetic algorithm because there
is no algorithm faster than brute force that has been proven to find the
optimal rule. In my genetic algorithm, I made each solution a collection of
bits that represent whether the player should cooperate or defect given a
past collection of turns. The fitness value for each possible solution is the
number of points it accumulates after going through a set number of turns
with each other possible solution in the population. The methods by which
the each part of the genetic algorithm is done can be changed easily because
each possible solution is a simple string of bits.

2 Background

The iterative prisoner’s dilemma has been studied extensively in the past.
Because the best rule is agreed upon, it is a good case with which to test
genetic algorithms. It has been shown that the best rule is to cooperate on
the first turn, and then do the same thing that the opposing player did on the
previous turn for the rest of the turns. The only exception is if the opposing
player defected the previous turn, there should be a 3% chance for the rule
to tell the player to cooperate instead of following the opposing player. This
rule was found by Robert Axelrod through a series of tournements in which
he invited colleagues to devise rules for the iteratve prisoner’s dilemma, and
then had them all play against each other. Many people have written a
genetic algorithm that solves the iterative prisoner’s dilemma, but I have not
found a case in which this problem was used to study genetic algorithms.

2



3 Development Sections

My program can run a genetic algorithm to find a solution to the iterative
prisoner’s dilemma using many different genetic algorithms methods. It can
take user input to tell it which method to use for each part of the algo-
rithm: the initial population creation, recombination, mutation, and natural
selection. It can also set essential constants: the mutation rate, the number
of generation, the size of the population, and the number of iterations of
“memory” that the solutions have when running the prisoner’s dilemma. As
the program runs, it displays a graph showing the fitness of each of the cur-
rent solutions. It also shows a graph that shows the average fitness of each
previous generation. After the genetic algorithm completes its run, another
method looks at the average fitness values and determines at which genera-
tion the fitness level stabilized. This represents how long it took the genetic
algorithm to find the optimal solution. After many genetic algorithm runs
with different methods and constant values it should become obvious which
is most efficient.
Finally, it outputs a file with these average fitness values so that they can
again be graphed after the program has completed the run. I used averages of
the number of generations each method takes to get to the optimal solution
in order to judge the usefulness of each method. The program automatically
runs the genetic algorithm with each set of parameters and then determines
when it found the correct answer (i.e. how many generations it took). The
output of the program is made up of a file for each configuration of the ge-
netic algorithm. Each file contains the results of 10 runs and an average of
them. The analysis was done with a program that graphs based on attributes
chosen by the user. This will hopefully aid in the deciding of which genetic
algorithm methods to use by future programmers.

4 Results

Based on my analysis, I was able to determine a number of things about the
genetic algorithm that I was using.
First of all, I was unable to determine which mutation and initial population
selection types were best. This is because the number of possible solutions
was smaller than the number of solutions in the population. This means that
it was very likely to have one of each possibility in the population with any

3



of the initial population types. Additionally, mutation was unnecessary since
all of the possibilities were present from the beginning.
For the recombination algorithms, I found that the double-point algorithm
was slightly better than the single-point algorithm. Using the fitness-based
algorithm for eliminating parts of the population was better than the static
algorithm. Larger percentage of the best score required was better than
smaller percentages, although I only tested up to 95%.

5 Bibliography

Do not Match, Inherit: Fitness Surrogates for Genetics-Based Machine Learn-
ing Techniques
The Evolution of Cooperation
Mediation of Prisoner’s Dilemma Conflicts and the Importance of the Coop-
eration Threshold
Genetic Algorithms - A Tool for OR?
The Genetic Algorithm and the Prisoner’s Dilemma

4


