
Exploring Genetic Algorithms Through the Iterative Prisoner's Dilemma
TJHSST Computer Systems Lab 2007-2008

Iterative Prisoner's Dilemma

The general Prisoner's Dilemma is a scenario in which there are two
players that can each choose to either cooperate with the other or to defect.
They must each make their decisions without knowledge of the other's
decision. Each player then gets points based on what their decisions were.
The points are given as follows:

Cooperate Defect
Cooperate
Defect

R,R S,T
T,S P,P

The point values must satisfy certain inequalities. In order to be a Prisoner's
Dilemma problem, the inequality R > T > P > S must be satisfied.

In the Iterative Prisoner's Dilemma, the two players go through this
scenario many times, and remember the past. In order to be used for the
Iterative Prisoner's Dilemma, the values must satisfy the inequality 2R > S +
T. The points from each round are added to form a score for each player. I
used the following table, which satisfies both inequalities and is the most
commonly used set of values:

Cooperate Defect
Cooperate
Defect

3,3 0,5
5,0 1,1

Genetic Algorithm

Genetic algorithms are used to find approximate solutions to
optimization problems when the solution would be very time-consuming to
compute. The general layout of a genetic algorithm is:

Initialization of gene pool
Loop over generations

Natural Selection
Selection
Loop over empty slots in population

Recombination
Mutation

There are many ways in which to perform each of these steps. My
program allows the user to select which method to use for each step. In
this way, the different methods can be compared.

The output of my program is a graph of the average fitness value for
each generation (shown below) as well as the numbers represented by this
graph in a text file, so that the graph can be recreated after the program is
closed. I will use these graphs to determine how many generations the
algorithm took to reach the best solution, and compare these among
different algorithms.

Aaron Dufour

Another method takes the data that is shown in a graph such as the
one above, and finds the point at which the fitness level stabilizes. It finds
this point by eliminating data from the left until the slope of a fit line is close
enough to zero (“close enough” based on many test runs). This will allow
data collection to be completely automated so that many runs of the genetic
algorithm can be used to formulate conclusions about the different
methods.

Final Run

After ensuring that the genetic algorithm worked properly with all of
the parameters, the next step was to run it with each of the parameters that
I wanted to test. A series of nested loops automated this process, allowing
the program to output all of the data in one run. The data was a file for
each configuration, containing the number of iterations that each of the 10
runs with that configuration took, and an average of those 10 numbers.

Determining When the Genetic Algorithm Finished

Although it is usually obvious to a person when the genetic algorithm
finished based on the graph, the randomness from the mutations prevents a
program from easily finding this information. The method that I
developed to perform this uses the least-squares method to find the slope
of the data. If the slope is not close enough to zero (“close enough”
defined based on testing) it eliminates the left-most data point and does the
same thing again. Once it finds a point where the slope is “close enough”
to zero, it returns the number of iterations that it took to find that point.

Analysis

Analysis of the data from the final run showed that I could not make any conclusions about the mutation rate or the initial population creation because the population was
too large and the number of possible solutions was very limited because I only allowed them to remember the past 2 generations, so which method was used had very little
effect on the outcome. However, I did determine that the fitness-based natural selection outperformed the static natural selection, and that the double-point recombination
slightly outperformed the single-point recombination.

	Slide 1

