Creation of an Air Traffic Simulation Using
Agent Based Modelling and Embedded
Statistical Analysis

Sam Eberspacher
TJHSST Computer System Lab
2007-2008

June 10, 2008

Abstract

As the skies over the United States become increasingly crowded,
airports in the United States are increasingly stressed to adapt to this
increased demand. The goal of this project is to visually represent the
strain on airports and passengers as a variety of problems generate
record delays. By using agent based modelling, along with real air
traffic information, this simulation may accurately predict the prolif-
eration of delays through out airports in the United States.

1 Introduction

The purpose of this project is to visually represent the proliferation of a de-
lay throughout a system of airports. By using techiques such as agent based
modelling, the simulation will predict actual delays with decent accuracy.
Additionally by repeating the simulation multiple times, the simulation gen-
erates increasingly accurate results as the number of trials approached infin-
ity. While a simulation such as this would take a human enormous amounts
of time, a computer may be able to run a simulation of 24 hours in a matter
of minutes. Due to the scale of the problem, efficiency will be key for the
computer to run the simulation in a timely matter.



2 Development

2.1 Agent Based Modelling

In order to simulate such a large system, this project will use a technique
known as agent based modelling. The deveopment of a system using agent
based modelling is key for the success of the project. Each agent must interact
with other agents in the system in the most realistic way possible in order to
generate the most accurate results. One benefit of the agent based modelling
is that parameters for interaction between agents define the overall behaviour
of the system. This allows the programmer to work on much smaller problems
with the agent in order to alter the overall system.

2.2 Embedded Statistical Analysis

Embedded statistical analysis is a done when real time statistics are needed
in a simulation. The program uses data at each time step to readjust sta-
tistical values for the desired population. These statistics are useful when
determining if the system is able to handle the introduction of new agents or
constraints such as weather data.

2.3 Geocoding

Geocoding is a process by which a formatted address such as 6560 Braddock
Rd. Alexandria, VA 22312 is converted to a longitude and latitude. This
process is important when dealing with map information that is displayed
on a computer. The computer is unable to relate formatted addresses so
longitudes and latitudes are used to generate accurate relationships about
location. This project uses the process to determine the location of each
airport and accurately plot the distance between airports.

2.3.1 Google Geocoder

Geocoding is a complex process which involves a significant amount of com-
puting power relative to web requests. Due to these requirements for geocod-
ing many companies charge a small fee per request. Alternativeley, there are
some companies which offer geocoding free of charge but wiht limitation on
the number of geocoder requests per day. I found that Google offered free
geocoding with a maximum of 5000 requests per day.



2.3.2 Request formatting

In order to interact with the Google geocoder, each request was done through
an HTTP request sent to Google servers. These servers then interperet the
parameters in the URL of the request and return the ouput specified by the
user. The parameters in a request are as follows:

e ¢ - The formatted address to be geocoded
e output - The desired output format (xml, kml, csv, or json)

e key - Google Maps API key
Sample Request (Key removed for privacy reasons)

http://maps.google.com/maps/geo?q=BWI+airport&output=csv&key=API_KEY

2.4 Software

Computer languages used in this project.

1. Java was used for the bulk of the project including all classes and the
display of information.

2. Python was used for interacting with the Google geocoder.

2.5 Procedure
2.5.1 Static Information

To start the project, initial classes were written to display static information.
The Aiport class and Simulation class were drawn up and coded, leaving
room for additional modifications which would take place at later stages of
development. The first step was to normalize the data points in an effort to
maximimize used space and increase effeciency. A randomly generated set of
coordinates was generated and used for this part of testing. The normalizing
equation for used in this project is given by the following equations:

Ty — Tmin

Lnorm = : wldthscrcen
Trange

Ynorm = : helghtscreen
Yrange



2.5.2 Geocoding

The second stage of the process was to geocode the airport locations and
provide a list of latitudes and longitudes which would make up the airport
map. In order to make the most robust program possible, a Python script
was written to automate the geocoding process. The script reads from a
list of aiports and formats an address for geocoding. The script then sends
the HT'TP request to the Google geocoder and parses the returned file. The
parsed data is then validated to verfiy that the location is in the United
States and written to a file.

The formatting of the address itself was very important to the geocoding
process. Since the data abotained did not contain street addresses, a straight
address request was not possible. However, it was determined that using the
three letter code for the address yielded desirable results. Some airports
though, still failed to meet validations standards (due to conflicts with other
country codes) so a second format was needed. The aiport code concatenated
with “airport” gave the second best results and the Python code was then
optimized to maximimze the number of valid airports.

Terminal

i ~/techlab % pythbn geocoae.py

Hartsfield-Jackson Atlanta International
Hartsfield-Jackson Atlanta International
Austin-Bergstrom International
Austin-Bergstrom International

BWI Airport

Logan International

charlotte Douglas International

chicago Midway Airport

Chicago O'Hare International
Cincinnati/Northern Kentucky Intl
Cleveland Hopkins International

Port Columbus International

Dallas/Ft. Worth Intl - DFwW Alrport
Denver International Alrport

Detroit Metropolitan Wayne County

Fort Lauderdale/Hollywood International
Southwest Florida International
Southwest Florida International

Bradley International

Bradley International

Hawaii Honolulu International

George Bush Intercontinental

Fail({s0z)
Success
Fa1l({602)

Fail(Invalid latitude or longitude) Skipping...

Success
Success
Success
Success

Success

Success
Fa1l({602)
Success
Fail(g02)
Success
Success

Success

Retrying. ..

Retrying...

Retrying...

Retrying. ..

Figure 1: Screenshot of geocoder script output




2.5.3 Waypoints, Collision Detection, and Collision Avoidence

Due to the large amount of air traffic which is needed to create an accurate
model, a waypoint system needed to be implemented to minimize collisions
of aircraft. Initially, each plane sets the next waypoint to the destination
airport, which would be the shortest travel path. The plane will only modify
it’s waypoint stack if a collision is detected and a new waypoint is pushed on
to the stack.

The process for deconfliction was based on the algorithm developed by
students at the Czech Technical University and operates as follows:

e Plane A enters the alert range of Plane B
e Determine the type of collision and execute the appropriate action

— Head on collision - both planes turn x degrees right and place a
waypoint path.

— Rear collision - Since the rear airplane is faster, the rear airplane
turns to the right and places a waypoint path around the slower
plane.

— Side collision - If the angle of incidence is less than 90 degrees,
treat similarly to head on collision otherwise treat similarly to
rear collision. The difference is that Plane A must turn to the
opposite direction of the flight path of Plane B to minimize delay.

In order to ensure that the planes were correctly avoiding each other, a
simple test environment was written into the simulator. Two planes would
be constructed and a collision would occur at a random angle. By watching
the resulting actions of the airplanes, it was confirmed that the algorithm was
working correctly, and it was implemented on the much larger simulation.

2.5.4 Path Tracing and Arc Rendering

In order to better visualize the data, both path tracing and arc rendering
where included in the program. Path tracing is a process by which previous
locations of the aircraft remains rendered to the screen. This allows the
user too better visualize where the plane came from as well as the speed
and direction of the airplane. Arc renderuing supplements path tracing, by
helping the user see where the plane is going. Arc rendering is done by falsely



rendering the location of the aircraft on the two dimensional viewing plane
to give the illusion of alititude. The progression of the aircraft is based on
an arc from the previous waypoint to the next waypoint on the stack. This
illusion allows the user to better project where the plane will land.

2.5.5 Embedded Statistics

The implementation of embedded statistics was done mostly through new
variables added to the Airport class. Due to the statistical properties of the
mean and standard deviation, the mean and standard deviation of the whole
simulation could be calculated without polling all of the agents for a second
time. The mean and standard deviation were calculated using the following
formulas.

p=

3 Results

The final version of the project is a functional representation of air traffic
over the United States. Unfortunately due to time constraints, a few features
of the project were not implemented. A glitch in the rendering process of the
Java platform causes the planes to be rendered slightly off course, generally
South-East of their true position. As a result, path tracing and arc rendering
were not included in the final build and the statistics were not displayed real-
time.

However, the simulation is still functional and several discernable pat-
terns were noticed by simply watching the simulation run. The presence of
clusters (as seen in the following screenshot) shows that the system is not yet
at capacity and that any delays should be minimized on average. Airports
launch and recover planes at a constant rate, so the presence of clustering
shows that some airports have launched all of the planes under their control.
Another possible explanation for the clustering is the collision detection al-
gorithm. Since the algorithm does not take into account final destination,



it is possible for a plane to be pushed slightly off course until the angle of
incidence to the next waypoint incurs a different action.

Al Inaffic Simulation)

Figure 2: Screenshot of the final simulation interface

Another pattern that was noticed is the low concentration of planes which
travel across the North-West. This pattern shows that some planes may reach
their destination faster by traveling across this relatively unused space. By
avoiding highly tafficked areas of the system, the plane reduces the probabil-
ity of using the collsion avoidance system, which can result in a more efficient
flight path.

4 Future Work

In general projects like this involve several people working full time for a
number of years. Given the amount of time alloted for work, the progress
made on this project is about normal but also has a lot of room for addi-
tional work. A few tests and modifications that would work well with this
simulation include modification of the collision avoidence algorithm, imple-
mentation of mutliple agent types, and weighted destination selection.
Modification of the collision avoidence algorithm would be a terrific idea
for future work. As the system approaches capacity the collison avoidence
algorithm becomes very important. By taking the statistics from one run of
the simulation and comparing them to the modified version, it is possible to



determine which algorithm is more efficient given the air traffic infrastructure
of the United States.

Implementation of multiple agent types is also another way which this
project could be adjusted in the future. By implementing multiple agent
types, the simulation can more accurately model real traffic over the United
States. A few possible agent types that could be implmented are military
aircraft, freight aircraft, and personal aircraft. These three types of aircraft
all represent large protions of the total air traffic in the United States, but
all three of these aircraft types operate under different protocols than com-
mercial passenger aircraft.

Another area for future work on this project would be to weight the
airports when they are selected for destinations. This greatly increases the
realism of the model because some aiports are travelled to more frequently
than others. Additionally, some airports are used as stepping stones on the
way to other airports in a route. In order to implement this, significant
research would need to be done into the routing that major airlines use to
maximize efficiency. However, the benefits the simulation would gain are
quite important to creating a realistc simulation.

References

[1] Koblin, Aaron, cmps. Flight Patterns. University of California at Los An-
geles. 21 Nov. 2007 <http://users.design.ucla.edu/ akoblin/work/faa/>.

2] Tumer, Kagan, and Adrian Agogino, comps.
Distributed Agent-Based Air Traffic Flow Management. University
of Oregon, UCSC, NASA Ames Research Center. 18 Jan. 2008
<http://web.engr.oregonstate.edu/ ktumer/ktumer-aamas07.pdf>.

[3] Benson, Kirk C., David Goldman, and Amy R. Pritchett, comps.
Applying Statistical Control Techniques to Air Traffic Simulations.
Georgia Institute of Technology. 18 Jan. 2008
<http://portal.acm.org/citation.cfm?id=1161734.1161979>.

[4] Michal Péchoucek and David Sisldk and Dusan Pavlicek and
Miroslav Uller Autonomous agents for air-traffic deconfliction.
Czech Technical University. 30 March 2008
<http://portal.acm.org/citation.cfm?id=1160633.1160925>.




[5]

Seungman Lee, Amy Pritchett, David Goldsman.
Hybrid agent-based simulation for analyzing the national airspace system.

Proceedings of the 33nd conference on Winter simulation,
December 09-12, 2001, Arlington, Virginia. 18 May 2008
<http://portal.acm.org/citation.cfm?id=564272>.

Pritchett, A. R., van Paassen, M. M., Wieland, F. P., and Johnson, E.
N. 2003. Aerospace vehicle and air traffic simulation. In Applied System
Simulation: Methodologies and Applications, M. S. Obaidat and G. .
Papadimitriou, Eds. Kluwer Academic Publishers, Norwell, MA, 365-389.
18 May 2008 <http://portal.acm.org/citation.cfm?id=966031>.




