
TJHSST Computer Systems Lab Senior
Research Project Paper

Elementary Education in a Technology Age
2007-2008

Gregory Gates

6/10/08

Abstract

Technology becomes more advanced and more accessible with ev-
ery passing day. Education should be utilizing this technology boom in
teaching current students. However, this does not seem to be the case.
The goal of this project is to try and implement computer program-
ming, through Scratch, as a tool for educating students in math and
science topics. This type of computer science education at a younger
age is increasingly beneficial as computers become a more prominent
facet of life.

1 Introduction

The main question that this research project aims to answer is, ”How young
is too young to start teaching children how to program?” The goal is to
establish a computer science program at Cardinal Forest Elementary School
through the use of the MIT developed program ’Scratch.’ The plan was to
watch how the students used the program so that I could discover an answer
to this question.

This paper will detail both how Mr. Allard and myself taught the stu-
dents, and how the students went about trying to solve the problems that
they were presented with. In order to ensure this project was more than

1



just the musings of a teenage scientist, Mr. Allard and I correlated our
lessons with the Virginia Standards of Learning (SOL) and Program of Stud-
ies (POS) benchmarks for the students. The children that participated in the
program were in kindergarten through sixth grade, with each grade having
a similar curriculum. Not all of the elementary school students participated
in this project however. Mr. Allard selected a diverse group of students for
this initiative that he thought would do best in and benefit from a program
such as this.

2 Background

2.1 Children and Programming

The task of educating the younger generations about programming has been
attempted before. The first attempt to create a kid-friendly programming
language was Logo, made by Wally Feurzeig and Seymour Papert. This pro-
gramming language mainly involved telling a turtle how to move around in
order to make various pictures with the turtle’s ”pen.” Since then, multi-
ple programming environments and languages have come about to try and
engage not only youth but more specifically girls in computer science and
programming such as: Squeak, Alice, and Scratch.

Despite the bountiful number of tools that modern technology gives us
for teaching students, little progress has been made in teaching computer
science at the elementary school level. The necessary technology is present
in the schools, but it is only being used to reinforce outdated teaching meth-
ods. Currently, computers are mainly being used as a medium to transfer
information, much like a television. Computers have so much more potential
than that. They should be used as a universal construction material, not
as a TV screen. Programs like Scratch enable kids to create whatever they
want to all by themselves. Children learn better by immersing themselves in
whatever they’re doing, rather than just listening to a teacher telling them
what to do (Papert, 1993).

The goal for this project is to establish something akin to a Computer
Clubhouse at Cardinal Forest Elementary School. The original Computer
Clubhouse was started by the Massachusetts Institute of Technology in Boston
in 1993 to ”provide more young people with the opportunity to become dig-
itally fluent.” (Resnick, 2002) Mitchell Resnick describes these clubhouses

2



as a place where kids and older youth ”become designers and creators with
new digital technologies. Clubhouse members use leading-edge software to
create their own artwork, animations, simulations, multimedia presentation,
musical compositions, websites, and robotic constructions” (Resnick, 2002).
These clubhouses have been an important inspiration for this project.

2.2 Scratch

Scratch is essentially a visually based programming language that is specif-
ically geared to students between the ages of eight and sixteen. Scratch got
it’s name from the scratching technique DJ’s use when mixing music during
a performance (Johnson, 2007), and this inspiration can be seen throughout
the program. People that use Scratch are able to take the different, colored,
simple blocks of code and put them together into a single creative product
much like DJ’s do when when mixing two songs together. One can tell from
the start that Scratch’s colorful and intuitive interface is definitely geared
towards a younger audience, however the potential age group of people that
could learn programming using Scratch is limitless. Some colleges are actu-
ally using Scratch in their introductory computer science courses (Johnson,
2007). Scratch is a powerful tool that allows skills like creative thinking and
systems analysis to be in the same program with some outstanding results.

3 Development Sections

3.1 Timeline

This past fall, I contacted the principals of the middle and elementary schools
in the West Springfield pyramid in Fairfax County, Virginia inquiring about
the possibility of starting a computer science program at their schools. Only
one school replied (Cardinal Forest) and the principal referred me to Cardinal
Forest’s School Based Technology Specialist, Mr. Frederic Allard. October
and November were then spent sorting out which programming language to
use and how we were going to use it. After experimenting with ’Squeak’
and ’Alice’ (developed by Carnegie Mellon) we settled on ’Scratch.’ It was
decided that the Scratch students would meet for the program during their
recess time every Thursday. I personally teach the students every other
Thursday, with Mr. Allard teaching on the days that I can’t make it. The

3



Figure 1: Mr. Latimer working with a third grader

first meeting was held at the beginning of December 2007.
Students were given very structured lessons for a majority of the year.

The purpose of these lessons was to familiarize the students with Scratch and
show them some of the many possible ways to use the program. In April,
Mr. Allard and I decided that it was time for the kids to work on their own
individual projects.

After spending most of April working on individual projects, Mr. Allard
and I introduced the final project for the students: “Kitty Plays Football.”
This final project was a little more structured than simply letting the stu-
dents work on their own, but still featured many different challenges that the
children were encouraged to attempt. The final project filled up the rest of
the year, ending with a little certificate ceremony for the students on June
5th, 2008.

3.2 Lessons

Each class lasted from 30-45 minutes, depending on the age of the students
attending and the schedules that their teachers had set. As was mentioned
before, much of the year was spent walking the students through very struc-
tured lessons in order to provide them with a basic understanding of Scratch.
Each lesson began with the students signing in to the lab (for attendance
purposes) and quietly sitting down at their computers. Once everyone was

4



Figure 2: Students learning about the coordinate axes

seated, we began teaching. These teaching sessions generally consisted of Mr.
Allard or I creating a small program with the kids which was based on the
technique that was being taught that day. For example, our first programs
were centered around telling a sprite to “move“ to different places on the
screen and using the “green flag“ to start a script.

3.3 Topics

The actual number of topics that were covered was dictated by how quickly
the students were able to move from one topic to the next. The number of
topics that we did in fact discuss was rather extensive considering that the
students had never seen the program before. Some examples of the Scratch
related topics include: if-then statements, basic iteration (the “repeat” and
“forever“ loops), and custom sprite and stage creation. However, it was very
important to Mr. Allard and I that the students learned about more than just
computer science. We used Scratch to teach the students about other things
such as the coordinate axes, negative numbers, degrees, and angles. Some of
our younger students were learning these topics multiple grades before they
needed to according to the SOL and POS benchmarks.

The potential for using Scratch (or computer science in general) as a

5



teaching tool is not limited to mathematics. For example, students can work
on their language arts abilities by working with each other and presenting
their projects to the class. Scratch program scripts are written in such a
way that they can almost be read as a story, and this helps the kids connect
one piece of code to the next. Some of our youngest students (kindergarten
and 1st grade) were barely old enough to read the actual words, yet the
color and simplicity of the blocks of code enabled them to actually do some
programming. Scratch is a powerful way to bring many different subjects
together that might normally be kept apart from each other in the classroom.

Mr. Allard and I were hardly able to teach the students everything there
is to know about Scratch. One example of a topic that I feel like would have
been good to touch upon is using different ”control“ blocks (i.e. pairing a
”forever” loop with an if-then block) in combination with each other. At-
tention was given to most of the unique blocks individually, (for example
one day the lesson might be on using the “repeat” block, while another day
might be spent working on broadcasting) but there wasn’t enough time to
specifically teach the students to use these blocks in tandem with one an-
other. Mr. Allard and I hoped that the students would be able to figure out
this technique on their own. Scratch is a program that encourages individual
exploration, and Mr. Allard and I wanted the students to take the initiative
to do a little exploring of their own once we let them create their individual
projects.

3.4 Individual Projects

Scratch participants were allowed to create their own individual projects
during the month of April. All of the students eagerly anticipated this day
when they could stop listening to Mr. Allard and I and start doing what
they really wanted to do. In order to prevent absolute free reign, Mr. Allard
created a rubric detailing some small requirements for each individual project.
Each individual project was required to contain: one custom sprite, one
custom stage, one sprite that “talked,” and some sprite interaction. By the
end of the month, the level of achievement was varied to say the least.

Sophistication of the students’ programs understandably varied by grade
level, although this variation was less distinct in the older (4th-6th) grades.
Many of the students used mainly the most basic blocks (i.e. “move,” “say,”
and “turn”) over and over again with no regard for the basic loop techniques
that we had discussed earlier in the year. This seemingly low retention rate

6



was attributed to the amount of freedom that we gave the students in creating
their own projects.

The kids placed a large and unexpected amount of effort into creating
their own custom sprites and stages. Mr. Allard and I feel that the amount
of time spent doing this took away from the necessary time needed for any
student to really think through his/her program. We wanted the students to
spend more time programming than drawing. One possible reason that the
students spent so much time creating sprites and stages as opposed to any
actual programming might have been the paint-like program used to create
them is something that the students were already familiar with. Program-
ming for the students was a new and challenging experience and it seems like
they weren’t quite ready yet to handle much on their own. This unfortunate
but enlightening result led me to create a final project with a little more
structure.

3.5 “Kitty Plays Football”

I designed the final project to be structured in a way that Mr. Allard and I
could continue to remind the kids of what needed to be accomplished, but I
also tried to leave some room for creativity on the part of the kids. In order
to avoid the sprite creation problem that plagued the last project, I went
through the sprite creation process with the students so that everyone had
similar sprites. After this, I walked the kids through the creation of the basic
program. This basic shell had the kitty simply kicking the football, followed
by the football going straight to the middle of the goalposts. After everyone
had this basic shell, they were given a sheet with a number of challenges that
they could attempt. Some of the tasks included making the football spin,
making the football come back to kitty without dragging it, and adding a
“score” variable.

The most difficult challenge for the students was making it so that kitty
had the possibility of missing the goal (not all kickers are perfect). Accom-
plishing this task requires the use of the “pick random” number function,
something that was not previously introduced to the kids. I included this
challenge to see how many students were willing to experiment and use things
that we had not necessarily taught them before. None of the students who
attempted this task (without any help that is) got it 100% correct, but some
did in fact get fairly close. A few students were able to make the football
miss the goal sometimes, but they got stuck when they were faced with a

7



Figure 3: The Kitty Plays Football project logo

need to tell the program that the football missed the goalpost. However,
the kids who tried to solve the problem demonstrated that they understood
what the challenge meant. That was encouraging because it meant to me that
they’re starting to grasp the basic computer programming concept where the
computer only knows as much as the programmer tells it.

3.6 Resources

The Cardinal Computer Lab features about 30 student computers along with
a teacher workstation and another computer connected to a SMART Board.
While a larger room would be appreciated so that more students could be
accommodated at one time, these resources were sufficient for the project.
It would also be difficult to handle any larger number of kids without more
consistent parent help. There was one consistent parent volunteer (Mrs.
Caroline Peck) during the year to help Mr. Allard and I manage the students,
but there were a couple of other parents who came sporadically to work with
the kids. Parent participation is a very important part of this program
and it’s important that they not only stay informed about the project, but
participate in it as well. Mr. Allard was in attendance at every Scratch
session, and I tried my best to attend every other one.

8



Figure 4: The Cardinal Forest Computer Lab

3.7 Subjectivity of Results

To put data into a chart or graph for this project would be difficult, un-
less something of an assessment was offered to the kids at one time or an-
other. Mr. Allard and I have been reluctant to give such an assessment
because we’re afraid it would discourage some of the kids from participating
in the program. Thus, proper (hopefully quantitative) assessment of stu-
dent progress has become a goal for the next year of the program. The data
generated from this experiment is rather subjectively based on my personal
experience teaching and working with the elementary school students.

3.8 Future Research

There are many different things left to explore for next year when two new
Thomas Jefferson students (Crystal Noel and Jessica Gorman) will continue
the program. Mr. Allard will focus on finding alternative ways to assess the
students, while also working on introducing new programming environments
and opportunities. There is a possibility (depending on grant applications)
of introducing Cricket next year, as well as Alice, Squeak, and/or Logo. The
program will definitely continue next year and hopefully for many years to
come.

9



4 Results and Discussion

Hopefully this project will encourage the implementation of a simple com-
puter science curriculum in all elementary schools. The earlier that kids can
start to program and become interested in computer science, the better. The
computer has the potential to start a digital revolution in learning, not only
in math and science but in English, social studies, and other subjects as
well. By the end of this initiative’s first year, the students have made obvi-
ous progress with respect to their familiarity with programming and Scratch.
How young is too young to start teaching kids how to program? The time
that I’ve spent with the students has shown me that you would be hard
pressed to go young enough.

References

[1] Burd, Leo and Robbin Chapman. Beyond Access: A Comparison of
Community Technology Initiatives. N.p.: n.p., 2002.

[2] Johnson, Carolyn Y. “With Simplified Code, Programming Becomes
Child’s Play.” The Boston Globe 15 May 2007. 10 June 2008 <http:

//www.boston.com/news/education/k_12/articles/2007/05/1/

with_simplified_code_programming_becomes_childs_play/>.

[3] Papert, Seymour. The Children’s Machine: Rethinking School in the
Age of the Computer. New York: Basic Books, 1993.

[4] - - -. Mindstorms: Children, Computers, and Powerful Ideas. New
York, Basic Book, 1980.

[5] Resnick, Mitchel. ”Rethinking Learning in the Digital Age.”
The Global Information Technology Report: Readiness for the
Net-worked World. By G. Kirkman. Oxford, UK: Oxford Univer-
sity Press, 2002. 32-37.

[6] Sheehan, Robert. Children’s Perception of Computer Programming as
an Aid to Designing Programming Environments. Preston, UK: n.p.,
2003.

10


