TJHSST Senior Research Project
Devlopment of a Generic Font OCR

First Quarter Research Paper
2007-2008

Nathan Harmata

November 2, 2007

Abstract

OCR (Optical Character Recognition) is a very practical field of
Computer Science. Since the late 1980’s, researchers have been devel-
oping systems to identify text from non electronic text sources, like
pictures or papers. The use of OCR systems has spanned from mak-
ing books in Braille to sorting mail by zip code by United States Post
Office.

Keywords: OCR, Image Processing

1 Introduction

The goal of this project is to create an application that can read text from
electronic picture files. One of the main focuses will be developing a generic
way to recognize different fonts, rather than hardcoding in definitions for spe-
cific fonts. Although OCR is by no means a "new” field, it has still yet to be
fully explored. There are very few OCR applications readily available to the
public, and even the ones that are free of charge are lacking in performance
and consistancy.

For now, an application that can read and recognize ”simple” pictures,
i.e. ones with minimal headers and only text, will be developed. If that



is successful, more advanced techniques to handle headers and ”background
noise” will be used. This project might also explore the field of handwriting
recognition.

2 Background

OCR systems have been around since the late 1980’s. Still, they are not
widely available or used by the public. The results from a review of the free
ones on the Linux operating system [l]are not very promising. Although
most of them had measured accuracies above 94 percent, that is not good
enough. The one commercial product tested, Aspire OCR, was accurate only
91.5 percent of the time. The most likely industry standard, Tesseract, is
also one of the oldest OCR systems. The review measured it to have an
accuracy rate of 99 percent. Development on it started in 1985 and it is still
used as the OCR engine for Ocropus, Google’s textual analysis application.
It is unlikely that this project will be able to achieve similar success, but the
goal is to be on par with the current OCR options.

3 Procedures

The current version works as follows:

The application accepts a picture file as input. The input file must be a
png image of text that is Courier font and size 24 bold. The picture is first
boxed to remove excess whitespace along the border. Then, the program
finds the locations of horizontal lines on whitespace inside the new image and
pairs them so that paragraphs and the spaces between paragraphs become
separated. A similar method is used to parse paragrahs into lines. Spaces
between words are handled by having the minimum space size for Courier
font size 24 bold hardcoded in. Lines are broken into words, which in turn
are broken into letters. The idea of this is to then have individual pictures
of each letter, which can be interpreted as a graph of pixels.

Each character is then compared to a database so that the best match
can be determined. The database was generated by creating an image con-
taining all the possible characters (uppercase letters, lowercase letters, and
punctuation) and then "telling” the program what the correct match is. The



program went through each character in the input and broke the final graph
of pixels into four quadrants.

The number of non-text (i.e. whitespace) pixels in each quadrant was counted.
Using these counts, a database of characters and their corresponding quad-
rant counts was created.

To find the best match for a given image, the same counts are gener-
ated and the relative pixel coverage for each quadrant was determined. The
relative coverage for quadrant one is:

_ < (1)
Cl + 02 + Cg + 04

Ry

This is used to handle text of different sizes, since the relative coverages
should be more or less the same.

3.1 Testing

1. A user-friendly interface for viewing the pictures of parsed words has
already been developed. This allows for manual visual detection of
errors in letter parsing.



Mo+ DL R Fature Wiewer
Imige O

2. An experiment was conducted to determine the effectiveness of relative
pixel coverages. An error rate of 0 is expected for size 24 fonts, but
there may be major errors in the analysis of text of different sizes. See
the "Results” section.

3. Once more work is done on developing the database of general letter
definitions, as described above, a more automated and effective method
of testing will have to be employ. One idea is to write a script that
creates picture inputs from randomly generated combinations of letters
and then compares the results from the OCR application with the ac-
tual text. Another idea is to develop a way to test the accuracy of the
OCR system in different areas, like how well it performs on individual
letters versus complete sentences.

4. The current method of making direct pixel comparisons has encoun-
tered several problems. First off, in the Courier font, certain capital
letters "elide” together. By this, it is meant that there is no vertical
space between adjacent letters. One example is the combination of ”M”
and 7 X” to form "MX”. Thus, the program interprets ”MX” as a char-
acter that is the combination of "M” and ”X,” which of course is not

4



going to yield a direct match with the cache. An algorithm to discern
between elisions and actual characters will have to be developed. An
example of an elision:

MX

The following computer languages, algorithms and programs are being
used.

3.2 Software

1. Java is used for picture input and output.

3.3 Algorithms/Programs

1. KolourPaint is being used to make picture files for input and to precisely
view pictures.

4 Results and Conclusions

An experiment was conducted to determine how effective using relative pixel
coverages is for analyzing data of different text sizes. The results may also
give insight into how text is resized by scaling. Fourteen images were gen-
erated of the same text in Courier bold font but with different size, varying
from size 6 to size 32, like this one:

this is a test



Including spaces, each input has fourteen characters. Using the size 24
cache, each image was analyzed. For each image, the number of characters
correctly read was recorded. These are the results:

Input Size Mumber Right
6 1
8 2
10 3
12 3
14 3
16 4
18 9
20 9
22 9
24 14
26 14
28 14
30 14
32 14

As expected, the analysis of the size 24 data was 100% correct. The other
results, however, were fairly suprising. Before performing the experiment, I
did realize that my program would not be accurate on inputs of text not
the same size as the cache, but the results were much more extreme than I
expected. For the input of small text size, like size 6, the error rate was very
high. One explanation for this is that really small text tends to be ”blurry,”
like below:

thi= i= a te=t



Still, this does not explain why the size 16 input was only read 29%
correctly. However, the results for the inputs larger than the cache may
provide an answer. The fact that all the larger inputs were read correctly
suggests that it is better to have a smaller cache. Perhaps resizing text works
by scaling the image up, but does not work in reverse. This would certainly
explain why all the inputs smaller than the cache yielded poor results.

These results suggest that a cache should be generated using images of
small text.

References

[1] A Review of Free Optical Character Recognition Software ground-
state.ca/ocr



