
TJHSST Senior Research Project
Devlopment of a Generic Font OCR

Second Quarter Research Paper
2007-2008

Nathan Harmata

January 23, 2008

Abstract

OCR (Optical Character Recognition) is a very practical field of
Computer Science. Since the late 1980’s, researchers have been devel-
oping systems to identify text from non electronic text sources, like
pictures or papers. The use of OCR systems has spanned from mak-
ing books in Braille to sorting mail by zip code by United States Post
Office.

Keywords: OCR, Image Processing

1 Introduction

The goal of this project is to create an application that can read text from
electronic picture files. One of the main focuses will be developing a generic
way to recognize different fonts, rather than hardcoding in definitions for spe-
cific fonts. Although OCR is by no means a ”new” field, it has still yet to be
fully explored. There are very few OCR applications readily available to the
public, and even the ones that are free of charge are lacking in performance
and consistancy.

For now, an application that can read and recognize ”simple” pictures,
i.e. ones with minimal headers and only text, will be developed. If that

1



is successful, more advanced techniques to handle headers and ’background
noise,’ or erroneous markings in an image, will be used. The algorithms used
to actually analyze text will be developed completely from strach, and will
be made to work irrespective of the font of the input image.

2 Background

OCR systems have been around since the late 1980’s. Still, they are not
widely available or used by the public. The results from a review of the free
ones on the Linux operating system are not very promising. [1] Although
most of them had measured accuracies above 94 percent, that is not good
enough. The one commercial product tested, Aspire OCR, was accurate only
91.5 percent of the time. The most likely industry standard, Tesseract, is
also one of the oldest OCR systems. The review measured it to have an
accuracy rate of 99 percent. Development on it started in 1985 and it is still
used as the OCR engine for Ocropus, Google’s textual analysis application.
It is unlikely that this project will be able to achieve similar success, but the
goal is to be on par with the current OCR options.

3 Procedures

The current version works as follows:

The application accepts a picture file as input. The input file must be a
png image of text. The current version accepts images of only text. Methods
will eventually be implemented to deal with text that is actually part of
a larger picture. [4] The picture is first boxed to remove excess whitespace
along the border. Then, the program finds the locations of horizontal lines on
whitespace inside the new image and pairs them so that paragraphs and the
spaces between paragraphs become separated. A similar method is used to
parse paragrahs into lines. Spaces between words are handled by comparing
the size of an actual space to the average size of the spaces between letters.
Lines are broken into words, which in turn are broken into letters. The
idea of this is to then have individual pictures of each letter, which can be
interpreted as a graph of pixels.

Each character is then compared to a database so that the best match

2



Figure 1: Visualization of the ’Slope Field’ algorithm. To the top is some
input image. In the image on the bottom, the red lines represent the inter-
mediate line segments and the blue lines represent the final line segments
after execution of the algorithm.

can be determined. The database was generated from the results of a testing
program (see Testing). It contains ’definitions’ of each letter in the English
alphabet per my own algorithm. Starting with an image of a single letter as
mentioned above, it works as follows:

1. The image is broken into portions, referred to as ’sectors’, that pass the
vertical line test. This ’Sector Parsing’ is done by finding the locations
of the optimal cuts.

2. Each sector image is converted into a two-dimensional array of pixels.
Pixels that are whitespace and thus not text are removed, meaning that
the array is comprised of only 1’s and 0’s.

3. Each of these arrays of pixels is then converted into a SlopeField. This
is done by first averaging together horizontal groups of pixels into a
single pixel, thus getting rid of unnecessary data. Then, starting with
the lower left pixel, line segments between contiguous pixels are formed
and their slopes calculatted. Contiguous line segments with slopes
similar in sign and magnitude are paired together, by treating keeping
the starting point of the first one and the end point of the second one.
The slope is this new line segment is re-calculated, and the process
continues. The result is a collection of line segments or, more simply,
a collection of vertices that form the line segments.

Letters are defined by a ’Sector Vector,’ which contains the number of
sectors, the total number of line segments in all the sectors of the letter, and
the sign of the slope of the first line segment. The comparison is performed
by finding the element in the database whose distance to the ’Sector Vector’
representation of the image is a minimum. A scalar is applied to certain
attributes of the Sector Vector to give them more weight. For example,

3



Figure 2: The simple viewer interface.

testing has shown that the number of sectors is a very good indicator of the
value of a letter. The following expression is used to find the magnitude of
the different vector between Sector Vectors A and B.

For now, the closest two matches for each letter are considered. Using
those possibilities, all possible permuations can be generated. These can
then be compared to a dictionary reference or to some grammar verification
system to assess to validty of the translation of the word. Even simply using
a dictionary, as is being done in the current iteration of the OCR system,
has been shown to vastly improve preformance. [3]√√√√ n∑

i=1

(scalari ∗ (attributeiA− attributeiB)2) (1)

3.1 Testing and Results

1. A user-friendly interface for viewing the pictures of parsed words has
already been developed. This allows for manual visual detection of
errors in letter parsing.

2. A generic testing program was developed to assess the results of the
addition of new methods. It simply runs the current image

4



Figure 3: Tested relationship (a).

transformation algorithm on every letter in the alphabet for several
fonts, which were picked for their different attributes:

(a) Arial

(b) Comic Sans MS

(c) Courier

(d) Helvetica

(e) Luxi Sans

The results were ouputted to a file and a separate program analyzed them.
Three relationships were determined:

1. The total frequency of each pattern (e.g. attributes of SectorVector)
and the average frequency of that pattern in each font.

2. For each pattern, a list of matching letters.

3. For each letter, a frequency table of each pattern.

The following computer languages, algorithms and programs are being
used.

3.2 Software

1. The OCR system is written entirely in Java.

5



Figure 4: Tested relationship (b).

2. Java’s ImageIO class is used for picture input and output.

3. Java’s BufferedImage class is ued to handle pictures.

3.3 Algorithms/Programs

1. KolourPaint is being used to make picture files for input and to precisely
view pictures.

2. My own algorithm which transforms an image of a letter into a collec-
tion of line segments (see Procedures) is used.

3. The current working version of the OCR system is called ’OCR Man-
ager.’ It uses the methods outlined in the ’Procedures’ section and
goes from the input of an image file to the output of all the possible
matching words. For example, the input shown in Figure 6 generates
the following output:

beak

boob

book

keek

kook

6



ÄÄÄ

Number of Segments * 1st Slope

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 99
________________________________________________________________________________________________________________

Letter
a 1 2 1 - - - - - - 1 - - - - ---

b - 1 - 2 - - - - - 2 - - - - ---

c - - - 2 2 - - 1 - - - - - - ---

d - - - - 3 1 - - - 1 - - - - ---

e - - 3 2 - - - - - - - - - - ---

f - - - - - 5 - - - - - - - - ---

g - - - 1 2 - - - - - - 1 - - ---

h - - - 1 2 1 - - 1 - - - - - ---

i - - - - - 5 - - - - - - - - ---

j - - - 1 1 3 - - - - - - - - ---

k 1 - 1 3 - - - - - - - - - - ---

l - - - - - 5 - - - - - - - - ---

m - 2 2 - - - - - - - - - - - 111

n - - - - 3 - - 1 1 - - - - - ---

o - 2 3 - - - - - - - - - - - ---

p - 1 1 - - - - - 1 2 - - - - ---

q - - - - 3 1 - - - - - 1 - - ---

r - - - 1 - 3 - 1 - - - - - - ---

s - 1 - 3 - - 1 - - - - - - - ---

t - - - - - 5 - - - - - - - - --

Figure 5: Tested relationship (c).

7



Figure 6: Example input for OCR Manager.

4 Conclusions

A lot of progress has been made since the first iteration of the OCR system.
The original version was based off of direct comparisons to a cache, meaning
that only text of the font that was cached could be read. The current,
version, however has been designed to work with any font. This is done
by comparisons to a cache of generic letter definitions, created by my own
algorithm.

Most of the remaining work will be devoted to improving these methods.
Perhaps the best way to do so is to either improve the current algorithms or
to develop new ones, such that the relationship shown in Figure 4 is strength-
ened. This relationships measured how ’spread out’ the results are; i.e. how
different one letter is from another. The fewer letters in each group, the
better, but at the same time, the more complex the comparison mechanism,
the more devastating errors casued by ’noise’ can be.

Further work will also have to be done to improve the current methods
for the detection and removal of noise. There are various methods that can
be used to accomplish this. [2] Overall, the successes the current version has
had shows that, with improvement, it will be a viable way to implement an
OCR system.

References

[1] Austin Acton. A review of free optical character recognition software,
2007.

[2] Faisal Shafait, Joost van Beusekom, Daniel Keysers1, and Thomas M.
Breuel. Page frame detection for marginal noise removal from scanned
documents, 2007.

[3] Kazem Taghva, Julie Borsack, and Allen Condit. An expert system for
automatically correcting ocr output, 1994.

[4] Victor Wu, R. Manmatha, and Edward M.Riseman. Finding text in
images, 1997.

8


