
TJHSST Senior Research Project

Idocrase: Development of a Generic Font OCR System

2007-2008

Nathan Harmata

June 6, 2008

Abstract

OCR (Optical Character Recognition) is a very
practical field of Computer Science. Since the late
1980’s, researchers have been developing systems to
identify text from non electronic text sources, like
pictures or papers. The use of OCR systems has
spanned from making books in Braille to sorting
mail by zip code by United States Post Office. This
project describes the development of an entire OCR
system in Java.

Keywords: OCR, Optical Character Recognition,
Image Processing, Computer Vision

1 Introduction

The goal of this project is to create an application
that can read text from electronic picture files. One
of the main focuses is developing a generic way to
recognize characters of different fonts, rather than
hardcoding in definitions for specific fonts. All of
the algorithms and processes used in this project are
original work.

Although OCR is by no means a ”new” field, it has
still yet to be fully explored. Many common com-
puter users either don’t have access to an OCR pro-
gram or don’t know they have one, and some of the
ones that are free of charge are lacking in performance
and consistancy.

Figure 1: An overview of the OCR process.

2 Background

OCR systems have been around since the late 1980’s.
Still, they are not widely available or used by the
public. The results from a review of the free ones on
the Linux operating system are not very promising.
[1] Although most of them had measured accuracies
above 94 percent, that is not good enough. The one
commercial product tested, Aspire OCR, was accu-
rate only 91.5 percent of the time. The most likely
industry standard, Tesseract, is also one of the old-
est OCR systems. The review measured it to have
an accuracy rate of 99 percent. Development on it
started in 1985 and it is still used as the OCR engine
for Ocropus, Google’s textual analysis application.
The goal of this project is to make a fairly accurate,

1



Figure 2: Parsing the word ”JeFfErSoN” into its let-
ters.

working OCR system.

3 Procedures

The Idocrase OCR system works by accepting an im-
age of text, and, through a series of parsings and
transformations, is a able to produce a basic form for
each character of text in the image. There are three
main steps in the OCR process: Image Processing,
Image Transformation, and Character Recognition.

3.1 Image Processing

The input image is not just going to be plain text
in a nice and simple format. The objective is to get
the text into such a form through a series of pars-
ings. First, paragraphs are recognized and separated.
Then, paragraphs are broken down into individual
lines, and lines into words. This is all done on the
premise that the image is of computer generated text.
This ensures that there are straight lines of whites-
pace between adjacent paragraphs, lines, words and
words. One key part of the text parsing process is
that the optimal separations are made; paragraphs,
lines, and words are ”boxed” as closely as possible,
to minimize errors. Each word is then processed into
its individual letters. Once again, the premise of the
existence of whitespace between adjacent characters
is used.

3.2 Image Transformation

Each character image then undergoes a series of
transformations into what are called ”Attributes.”
Attributes of the image are then combined into what
is called a ”Character Model.” A Character Model
serves as a generic character definition. That is, it
defines what the character would be like irrespective
of font. The purpose of this is that each Character
Model can be compared to a pre-generated database
of generic character definitions for each possible let-
ter, number, and symbol, and the best match can

Figure 3: An overview of the Attribute class.

be found. The steps through which each character
image goes are as follows.

3.2.1 Attribute

An Attribute is one specific representation of the im-
age and is used as a comparison heuristic. Each At-
tribute is able to compare itself to other Attributes
of the same type and is able to output its relevant
data. Each Attribute also knows what type of At-
tribute it is. This fact is very important and will be
explained later. In the actual code of this project,
there is an Attribute class which each specified char-
acteristic extends. Currently, this project uses two
Attributes, ”Sector Vector” and ”Gap Vector.”

1. Sector Vector

A Sector Vector consists of three pieces of data:
the number of ”sectors” in the image, the to-
tal number of line segments in the transformed
form of the image, and the sign of the slope of
the first such line segment. A sector is defined
as a region of the image that passes the vertical-
line test; that is, for each x-coordinate in the
image, there is at most one y-value. The pur-
pose of parsing the image into sectors is so each
sector can be parsed into line segments. Since
the line segment parsing is based on the slopes
of adjacent pairs of pixels, sectors parsing is nec-
essary. The algorithm of transforming an image
into a Sector Vector consists of two steps, Sector
Parsing and Slope Field Parsing.

(a) Sector Parsing
Starting from the top of the image, the pro-
gram progresses downward until it reaches
a point at which there is a conflict with
the portion of the image already processed
that would cause a failure of the vertical-
line test. This point represents the end of

2



Figure 4: An example of Sector Parsing. The ”A”
is parsing into two sectors: the upper half and the
lower half.

one sector and the beginning of another.
This process is repeated until the entire im-
age is parsed in sectors. The result is that
each sector is as large as possible, within the
constraints. The important piece of data
gained from this process is the number of
sectors in the image. Each sector is then
parsing into line segments.

(b) Slope Field Parsing
Starting with the left-most pixel in the sec-
tor, the program progresses to the right.
At each x-coordinate, a line segment is
constructed between the pixel at that x-
coordinate and last pixel considered. If the
slope of this line segment is similar, in sign
and magnitude, to the slope of the previous
line segment, then it is incorporated into
the previous by changing the last pixel of
the previous one to the last pixel of the cur-
rent one. If the slope is radically different,
then a new line segment is constructed. The
results is that the image in transformed into
a collection of line segments. There are two
important pieces of data derived from this
step: the number of line segments and the
sign of the slope of the first line segment in
this sector.

A sample sector vector is:

-2 3

This means that the image contains two sectors,
the sign of the slope of the first line segment
in the first sector is negative, and there are a
total of three line segments. This happens to be
the Sector Vector representation of ”C” for most
fonts.

Figure 5: An example of parsing a ”C” into line seg-
ments. The image on the right contains the pixels
which, when connected, form the line segments rep-
resenting this image. Note that the Sector Parsing of
the ”C” is not shown in this diagram.

Interestingly, a similar method of segment pars-
ing was independently developed by two re-
searchers. It does not use a process similar to
Sector Parsing; instead it parses the image into
a set of predefined line segments. [2]

2. Gap Vector

A Gap Vector is simply what, if any, ”gaps”
are present in the image. A gap is defined as
a breakage of pixels on one of the four edges of
the image: top, right, bottom, and/or left. The
purpose of having such a comparison heuristic is
the assertion that gaps are more representative
of a character than line segment parsing. That
is, same characters of different fonts are more
likely to have the same gaps than they are to
have the same Sector Vector. Also, Gap Vector
provides information that is exclusive from the
information given by Sector Vector. The pres-
ence of a gap isn’t likely to have any correlation
to the presence of sectors. Unlike sectors, the
definition for a gap isn’t simple. Both concepts
were invented for the purpose of this project, as
were their working definitions. This project de-
fines a gap using the algorithm by which they
are located.

(a) Corning Finding
The first step in the gap finding process
is to locate the four corners of the image.
Each image is defined to have four corners;
even if it is not visually obvious to a human
that there are four corners, such as is the
case with a letter like ”O,” four corners are
forced on the image. There are four cor-
ners: top left, top right, bottom left, and

3



Figure 6: The portion of the image circled in red is a
”gap” in the ”C”.

bottom right. A corner is defined as the in-
tersection of the path starting from one cor-
responding extremum of the image and the
path starting from the other corresponding
extremum of the image. For example, the
top left corner is the intersection of the path
starting from the bottom left extremum of
the image and the path starting from the
top left extremum of the image. The cor-
ner is, of course, a single point. Therefore
this intersection is the one that occurs when
the path progress towards each other at the
same rate. This process is repeated to find
the locations of the four corners of the im-
age.

(b) Path Tracing
The next step is to use the corners to de-
termine if there are any gaps in the image.
Between any two adjacent corners lies one
of the sides of the image. Any gap on that
side, by definition, must be between those
corners. The algorithm uses this fact to its
advantage. For each pair of adjacent cor-
ners, it iterates across the straight line be-
tween them. As each point on this line, it
determines if the corresponding point in the
actual image is, in respect to the side of the
image on which the computation is occur-
ing, in front of or behind of the line. For
example, consider finding a gap on the left
side of an image. On the left side, the slope
of the path between the two corners forming
that path, the top left and bottom left, is in
respect to a vertical line. That means that,
for a coordinate on the line (a) and a co-
ordinate on the image (b), a comparison of
the x-coordinates of those coordinates can
be used to determine the relative location
of the coordinate on the image. Since the

Figure 7: An example of the process of finding the
top left corner of ”A”. The image on the left shows
the path from the bottom in red and the image on
the right shows the path from the top in green.

left side of the image is being considered,
if the difference between them is positive,
then the one on the image is behind the
one on the line. That is a ”is in front of” b
if:

ax − bx > 0 (1)

The sum of all the distances between the
line and the corresponding points is calcu-
lated, keeping in mind whether the point
was in front of or behind the line. The re-
sult is that if more of the pixels are behind
the line, this sum is negative. That means
that more of the image itself is behind the
line, which implies a gap. This computa-
tion is actually simply comparing the area
of the part of the image in front of the line
with the area of the image behind the line,
in respect to either a straight line or a hor-
izontal line, whichever is more appropriate.
Thus, a gap exists on a side if there are more
pixels behind the line between the corners
forming that side than in front of it.

The result is a list of gaps, represented by the
strings, ’T’, ’R’, ’B’, and ’L’ for ’Top’, ’Right’,
’Bottom’, and ’Left’, respectively. A sample Gap
Vector is:

R

The means that there is a gap on the right side
of the image, such as is the case for a ’C’.

3. Pixel Concentration Vector

4



Figure 8: An example of the Path Tracing algorithm
for ”O”. The pixels in red are the ones on the actual
image. The green lines in the left image show the
straight line paths between the adjacent corners. The
areas in green in the right image show the portions of
the image ”in front of” their respective straight line
paths. Since all of these areas are greater than the
areas behind the paths, which happens to be 0 for
”0”, there are no gaps in the image.

A Pixel Concentration Vector contains two
pieces of information about an image. It tells
which horizontal side and which vertical side
contains more pixels of text. This Attribute was
created to deal with the fact that the Sector Vec-
tor and Gap Vector Attributes do not differen-
tiate between similar characters that have been
translated and/or rotated. For example, a lower-
case ”p” has almost an identical representation
to a lowercase ”b”.

A Pixel Concentration Vector is generated for
an image by simply counting the number of fa-
vorable (i.e. text) pixels to the left and right of
the horizontal midpoint and to the top and bot-
tom of the vertical midpoint. Becuase of this, it
is important that the image has been properly
processed and boxed before going through this
process.

The values for the horizontal concentration are
”left” and ”right” and the values for the verti-
cal concentration are ”top” and ”bottom”. In
addition, a concentration can have a value of
’balanced’ if there is not a significant difference
between the number of pixels on each side.

For example, the Pixel Concentration Vector for

Figure 9: A example of the computations needed to
determine the horizontal and vertical concentrations
of ”p”.

lowercase ”p” is:

top left

This means that more pixels were on the top side
and left side of the image, respectively.

The importance of each Attribute knowing what
type of Attribute (Sector Vector, Gap Vector) it is,
called its ”description”, is so that different Attribute
representations for an image can be easily grouped to-
gether. This grouping is called a ”Character Model.”

3.2.2 Character Model

A Character Model contains a collection of Attributes
and the processes to use those Attributes for charac-
ter recognition purposes. The Attributes are stored
in a HashMap based on the hashcode of their de-
scription; this is done so that they are always stored
in the same order, making comparisons between like
Attributes easier.

1. Comparisons are relatively simple; two Charac-
ter Models are treated as vectors and the mag-
nitude of the vector difference between then is
calculated. The ”elements” in the ”vectors” are
Attributes; therefore the definition of a differ-
ence of Attributes is the result of the comparison
between them defined by their Attribute class.
Thus, a comparison between Character Models
A and B, each having n Attributes, is:

5



√√√√ n∑
i=1

(Ai.compareTo(Bi)) (2)

2. A Character Model also has a method of out-
putting its important data. It does this by using
the output of its Attributes and their respective
descriptions. For example, the Character Model
output for the ”C” image, which has been used
as an example, is:

SectorVector -2 3 GapVector R

Character Models are hashed based on the hash-
code of this output string, much like the hashing
process for Attributes. This is done to ensure
that Character Models that are identical in re-
spect to their data have the same hashcode.

3. Character Models can also be averaged together.
This is important for the generation of the
Generic Character Definition Database. Char-
acter Models are averaged together by averaging
each Attribute. Much like the comparison pro-
cess, each Attribute defines how to average its
own members. For example, the average of a set
of Gap Vectors is the most popular gap. The
average of Character Models A through P, each
with n Attributes, is:

n∑
i=1

(average(Ai, Bi, · · ·Pi)) (3)

3.2.3 Generic Character Definition Database

The purpose of all these parsing and transformations
is to get the input image into a generic form. This
form can then be compared, using the methods of
comparison already outlined, with a pre-generated
database of generic forms. Such a database, called
a Generic Character Definition Database (GCDD),
is created by performing the analysis procedure on
each character (letters, numbers, and other symbols)
for several fonts and averaging the results, which are

Figure 10: An overview of the Character Model class.

then outputted along with the characters they rep-
resent into a file. This database is handled by the
system using the outputs of the Character Models in
it. Because of this, it is important that the output
includes the Attribute descriptions in addition to the
Attributes data.

3.3 Character Recognition

The Idocrase OCR system ”reads” text by choos-
ing the letter(s) that, after the input image has
gone through the Image Processing and Image Trans-
formation steps, is the ”closest” to the Character
Model(s) of the input image.

For now, assume the input image’s text only con-
tains one letter. The process of finding the best
match can be represented graphically. Each At-
tribute (Sector Vector, Gap Vector, and Pixel Con-
centration Vector) is one of the coordinates axes.
Thus, this space contains possible Character Models.
Each member of the GCDD is plotted in this space.
Then, the input image goes through the Image Pro-
cessing and Image Transformation steps and is also
plotted. The best matching character is the one that
is the ’closest’ in this Character Model space to the
point representing the input image. This distance
is equivalent to comparing the Character Model of
the input image to the Character Model of the best
match, which is defined by the ’compareTo’ method
of the Character Model class.

Images containing more than one character of text
are more difficult to ’read.’ The system finds the col-
lection of the appropriate number of characters in the

6



Figure 11: A visualization of the Character Recogni-
tion process for an input image with only one char-
acter. The blue dot is the Character Model represen-
tation of the input image and the red and green dots
are two members of the GCDD that are ”close” to it.

GCDD that have the closest Character Models to the
ones of the input image and are also members of an
English dictionary. This is done by generating all the
possible words than can be formed from the top three
matches for each character and choosing the overall
best matching word. Even a simple method such as
this has been shown to improve OCR accuracy. [6] In
addition, a simple grammar reference can be used to
improve accuracy. The Idocrase OCR system handles
proper usage of punctation and capitalization.

4 Testing and Results

4.1 Testing Programs

Throughout the development of the system, various
programs were developed to help analyze interme-
diate results in order to further the progress of the
project. The most important one of these analyzed
the working version of the GCDD to determine the
following:

1. The deviation between a Character Model used
to generate the GCDD and the contents of the

GCDD, for each character in the GCDD.

2. How ”close” members of the GCDD are to each
other.

3. For each member of the GCDD, the actual char-
acters who share that member.

Ideally, the value of the first relationship would
be relatively small, and the value of the second re-
lationship would be relatively large, and the value of
the third relationship would be relatively large. This
would mean that character definitions are more dis-
crete; the results are more ”spread out.”

4.2 Results

An automated testing system was developed to deter-
mine the accuracy of the Idocrase system with respect
to font and font size. Using Java’s Graphics class,
images of selected words of four different founts were
generated and run through the system. The accuracy
of the system was tested as the percentage of letters
read correctly.

Table 1: System Accuracy Results
Font Size

18 20 24 28
Dialog 68.9 91.5 95 90.4
Serif 93.2 100 89.6 100

Times New Roman 97.2 100 97.3 95
Courier 100 95 96.4 89

The system had a tested overall accuracy of 93.7
percent. The tested accuracy for reading words, how-
ever, is much lower, at around 50 percent. Several
explanations for this are offered in the Appendix.

4.3 Resources

In addition to the ones already described, the follow-
ing computer languages, algorithms and programs are
used.

1. The Idocrase OCR system is written entirely in
Java.

7



Figure 12: The Idocrase Application.

2. Java’s ImageIO class is used for picture input
and output.

3. Java’s BufferedImage class is used to handle pic-
tures.

4. KolourPaint is being used to make picture files
for input and to precisely view images for debug-
ging purposes.

5 Idocrase Application

An application was developed to allow users to utilize
the Idocrase system. It is contained in a .jar file, so
the user’s computer needs to have the latest version
of Java installed (1.6.0 05). The application allows
user to load image files and select portions of them
to be ”read” by the system. The generated text is
placed in a text box in the application, from where
it can be copied and pasted into a text editor. The
user also has the option of directly saving the output
to a text file. The user also can turn off the usage of
the dictionary and/or grammar references. If there
are significant errors in the results, the user can view
the debug statements generated by the system.

Figure 13: An example of an elision.

6 Conclusions

Further work could be done to improve the cur-
rent methods for the detection and removal of noise.
There are various methods that can be used to accom-
plish this. [5] In addition, there might be a prelim-
ineray check to ensure that the portion of the image
selected is, in fact, text in the proper orientation. [3]
The Idocrase system checks to see if the selected im-
age passes basic benchmark texts, but assumes that
it actually contains text. There have already been
methods developed for the purpose of distinguishes
certain types of images from other types [4] and text
from non-text. [7]

Overall, the Idocrase system met the goals of this
project. It was developed virtually completely from
scratch and gives the user some powerful OCR tools.
Its accuracy isn’t as good as some of the existing OCR
systems, but it is still quite impressive considering the
scope of this research project.

Appendices

A Unused Ideas

These are some of the more interesting ideas that,
through the course of the development of this project,
were either discarded or not used at all:

1. The initial iteration of the Idocrase system was
made to only work on a specific font. It did
not contain Character Model or Attribute struc-
tures. Instead, there was only one method of
comparison, which was relative pixel coverage of
each of the four quadrants in the image. This
idea was obviously not very successful, and was
just intended as a starting point for the develop-
ment of the eventual final product.

8



2. The Character Model structure was actually in-
vented to make it easier to add more methods
of comparison (which evolved into the Attribute
structure), rather than for general organization
purposes. The inital plan was to use Java Reflec-
tions to read in the GCDD, assuming that each
token was the name of an Attribute and the suc-
ceeding tokens were the required arguments for
the constructor method for that Attribute. This
idea was never implemented, but would make
simple to add on to this project.

3. One major problem with the Image Processing
step was ignored because there was not enough
time to find a good solution to it. Certain let-
ters of certain fonts ”elide” when placed next to
each other. This occurs rather often with capi-
tal letters in the Times New Roman font, most
notably. This causes a large obstacle in the Im-
age Processing step because it is assumed that
there is whitespace between adjacent characters,
meaning that elided characters are treated by
the system as one character, which, of course,
will not be ”read” very accurately. A solution
to this problem was formulated, but never im-
plemented due to time constraints. From obser-
vation, most elisions occur near the top or the
bottom of the boxed image. This, coupled with
the fact that boxed images of elided characters
are going to be much wider than those of non
elided characters, can be used to detect elisions.
The offending characters can then be easily sep-
arated, since the cause of the elision would be
known.

B GCDD

The version of the GCDD included in the Idocrase
system was generated from size 20-point fonts. Based
on the final system accuracy tests and previous test-
ing during the development of the Idocrase system,
it seems like there may be a relationship between the
size of the text used to generate the GCDD and the
accuracy of the system. There is a slight pattern
showing that a GCDD made from smaller font sizes

is better overall. There was not enough time to ex-
plore this further.

C System Accuracy

The system was tested to read individual characters
at 93.7 percent accuracy. This is actually rather
good; it is comparable to commercial OCR programs.
It is discouraging, then, that the system reads words
correctly only half the time. There are several expla-
nations for this.

1. Bearing in mind that this project was developed
independent of any existing OCR algorithms,
it is possible that the current method of word
recognition is simply suboptimal. Maybe it is
not correct to find all the combinations of the
top matches characters and then choose the best
one.

2. Commercial OCR systems probably have ex-
tremely advanced grammar engines. These sys-
tems would know when to expect nouns as op-
posed to verbs, etc. Statistical methods could
also be used to keep the frequency of certain
words intact. It is likely that, if the Idocrase
system had a powerful grammar engine, it could
greatly improve its accuracy, even with its cur-
rent method of word recognition. This would
mean that once the system generates lists of pos-
sible words for each actual word, the problem be-
comes one of Computational Linguistics, instead
of OCR.

3. Data about character recognition accuracy for
commercial OCR systems were not available;
only word recognition accuracy were. Although
Idocrase’s 93.7 percent accuracy seems very
good, it might be the case that commercial OCR
programs have character recognition accuracy
close to 100 percent and there are other reasons,
perhaps grammatical and/or formatting errors,
that cause a lower word recognition accuracy.

9



D Idocrase Application

D.1 Working with Images

The system currently supports Tiff, Tif, Gif, JPEG,
JPG, and PNG images. To load an image, the user
can press ”File” - ”Open” and browse for his or her
file. The maximum size for an image is 600x585 pix-
els. If the user’s image is too large, try resizing it
or using a portion of it using picture editing software
like Microsoft Paint.

Once the user has loaded an image, he or she can
select the portion of it to be read by the system. To
do so, press the ”Select Area” button on the left side
of the interface and draw a box around the portion
of the image by clicking, dragging, and then releasing
the mouse. Be sure to leave at least some space be-
tween the box and the text in the image. If the user
is unhappy with his or her selection, her or she can
press the ”Unselect Area” button and try again.

The user can save his or her selection to a file by
pressing ”File” - ”Save Selection.” He or she should
be sure to give the file an appropriate extension (Tiff,
Tif, Gif, JPEG, JPG, or PNG).

Once the user has part of the image boxed and
selected, the OCR system needs to perform a pre-
liminary check. Do this by pressing the ”Validate”
button, which will appear on the left side of the in-
terface after an area has been selected. A possible
cause of error is the image not being boxed properly.

D.2 Using the Isocrase System

A validated image can be ”read” by the system.
Pressing the ”Read” button on the left side of the
interface will output the best matching text to the
text box in the bottom of the interface. From there,
the user can either copy and paste it into a text editor
or use the export function (”File” - ”Export Text”)
to save it directly in a text file. Be sure to give it the
appropriate ”.txt” file extension.

By default, dictionary and grammar references are
used. With the dictionary reference, the system will
only choose English words as matching text. The user
can turn either of these off by pressing ”Options.”
With both references not in use, the text output will

be the best match character-for-character, which may
or may not be of use to the user.

References

[1] Austin Acton. A review of free optical character
recognition software, 2007.

[2] Maher Ahmed and Rabab Kreidieh Ward. An ex-
pert system for genral symbol recognition, 1998.

[3] Hrishikesh B. Aradhye. A general method for de-
termining up/down orientation of text in roman
and non-roman scripts, 2004.

[4] Subhaijt Sanyal and S. H. Srinivasan. A system
for detecting and matching logos in natural im-
ages, 2007.

[5] Faisal Shafait, Joost van Beusekom, Daniel Key-
sers1, and Thomas M. Breuel. Page frame de-
tection for marginal noise removal from scanned
documents, 2007.

[6] Kazem Taghva, Julie Borsack, and Allen Condit.
An expert system for automatically correcting ocr
output, 1994.

[7] Victor Wu, R. Manmatha, and Edward
M.Riseman. Finding text in images, 1997.

10


