
Computer Systems Research Paper Initial
Draft

Using Genetic Algorithms to Optimize the
Traveling Salesman Problem

2007-2008

Ryan Honig

January 24, 2008

1 Abstract

My goal is to create a program that can solve the Traveling Salesman Prob-
lem, finding near-optimal solutions for any set of points. I will use genetic
algorithms to try to find the optimal paths between the points. In the end,
after I create a working alorithm that will find near optimal paths, I hope to
create a graphic interface that will display the chosen points and the paths
through those points as the algorithm runs.

2 Purpose

The main purpose of my project is to develop my own genetic algorithm
that can hopefully find close to optimal solutions for the Traveling Salesman
Problem. Once this is done I hope to modify the program to work for asym-
metric problems and create a user interface that will graphically display the
current problem and run the algorithm to find a solution.

This is a good problem to tackle because it is fairly complex and deals
both with some complex algorithms and with some higher level math. By
finding an efficient and optimal solution to the traveling salesman problem,

1

it can be applied to the larger NP-complete field of optimization problems
which can contribute to many fields of study. The TSP has been around for
a long time, but more efficient programs for solving the TSPs are still being
created. Many different algorithms have been used to attempt to solve TSPs,
including heuristics, genetic algorithms, colony based simulations, and brute
force. Heuristics are the best for finding ’good’, but not optimal, paths fairly
quickly, while genetic algorithms take longer but find more optimal paths.

The paper: ”New Genetic Local Search Operators for the Traveling Sales-
man Problem” by Bernd Freisleben and Peter Merz details how a good way
to create an algorithm for the Traveling Salesman Problem is to use a basic
heuristic to find the initial pool of paths and then use the genetic algorithm
on this pool of paths to find a near-optimal solution. I hope to build off of
this approach by creating an algorithm that will work for both symmetric
and asymmetric TSPs. Another approach that is detailed by Marco Dorigo
and Luca Maria Gambardella in ”Ant Colonies for the Traveling Salesman
Problem” is to use a simulated ant colony to solve a TSP data set. While this
is not the most efficient way of solving a TSP, it can find very near-optimal
solutions. One of the most interesting articles that I found on the Travel-
ing Salesman Problem is ”Genetic Algorithms for the Traveling Salesman
Problem: A Review of Representations and Operators”. This article does a
comparison of the different types of algorithms used to solve TSPs and their
different way of representing the data. The question that I would like to
answer through my project is what combination of algorithms can create the
most efficient and optimal traveling salesman program.

3 Development

With my project, I would like to develop an efficient algorithm that can
find near-optimal solutions for both symmetric and asymmetric traveling
salesman problems and then incorporate it into a user interface that will run
the algorithm and display the paths that the algorithm comes up with. My
algorithm will be a mix of basic heuristics and the more complex genetic
algorithms.

I began by creating a program that used a simple genetic algorithm that
would reverse a section of a parent path which would then be replaced in the
pool if it had a shorter path than the parent. I began testing this with data
sets that can be found here: http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

2

After finding that my solutions were off by multiple powers of ten, I discarded
that algorithm and began a new one.

A B

C

D

E

A

A A

A
A

B

B

B

B
B

Combined Path

B
A B

C

D

E

A

A

B

B

Child

A AB B

C C

D D

E E

Parent A Parent B

This new algorithm starts by creating an initial pool of fifty random,
legal paths. For each iteration of the genetic algorithm it will then select two
parent paths at random to create a child path from. All of the links between
each point on the parent path are then compiled into one set of links. The
program will then alternate choosing a link from each of the two parents to
create the crossover. If the program gets stuck on a node and cannot create
a legal link from the parent links, then a greedy algorithm takes over and
completes the broken path.

3

E B F D G A C

R1 R2

E A G D F B C

During second quarter I created a mutation method. This mutation
method keeps the pool from being populated by the same path, since it
has a chance of changing one of the pools in the path. My mutation method
has a one in fifty chance of occuring. When a mutation does occur, two
points are selected at random on the path, and then the path in between
these two points is reversed. Once my mutation method was implemented,
it significantly helped my program because it allowed the pool to continue
running even if it got stuck on a single path that wasn’t anywhere close to
the optimal solution.

4

A B

C

D

E

A

A BA

E

A B

C

A B

D

A

D

E

A B

E

Initial In Order Path

During second quarter, I also created a heuristic to generate the initial
pool of paths. I created the heuristic, hoping that it would produce better
results by starting with a pool that isn’t random and it might even be faster.
The heuristic I devised will first pick a random point out of all of the points
the salesman must travel to. It then finds which two other points are the
closest to that point and begins two paths starting at the first point, and
going to each of the other two points. Then, for each of those two points,
it finds the next two closest points, and creates two more new paths, thus
doubling the number of paths being made. It continues doing this until there
are enough points to fill the pool, at which point it will just continue by
picking the next closest point, until a full traverse of the points is acheived.
I will discuss how this heuristic did in my results section.

5

4 Results and Discussion

After testing my initial algorithm that reversed sections of the paths, I was
not surprised to find that my solutions to data sets were multiple powers of
ten off from the best known solutions. I knew that since my initial algorithm
was based off of single parent genetics, it would not work very well.

I then created the genetic algorithm that I am currently using. When I
first began testing this algorithm, my program would often fill up its pool
with copies of the same path, which would prevent it from finding a solution
any better than that one. In order to correct this I implemented a mutation
method to free up the pool. This worked and my program ran pretty well.
Using data set a280 from the TSPLIB website, the best solution that my
program came up with was 2608.837612, which has an error of just 1.16
percent from the best known solution of 2579, with an average running time
of about 2.15 seconds. Using the att48 data set, my programs best solution
was 10820.248365, which has an error of just 1.81 percent from the best
known solution of 10628, with an average running time of 3.52 seconds.

I then created my heuristic, hoping that it would produce better results
by starting with a pool that isn’t random, and possibly even be faster. When
testing the heuristic program with the same data sets that I used to test the
program with the randomly generated pool, I found that the solutions were
slightly better, but the program took mush longer to run. Using data set
a280, the best solution that my program came up with was 2597.401845,
which has an error of just .72 percent from the best known solution of 2579,
with an average running time of about 5.03 seconds. Using the att48 data
set, my programs best solution was 10751.542837, which has an error of just
1.16 percent from the best known solution of 10628, with an average running
time of 7.31 seconds. Currently, I am not sure whether I should continue
working with my heuristic program or with my randomly generated pool
program, because although the heuristic program is slightly better, it takes
much more time to run.

5 Bibliography

—Dorigo, Marco and Gambardella, Luca Maria. ”Ant colonies for the Travel-
ing Salesman Problem”. http://code.ulb.ac.be/dbfiles/DorGam1997bio.pdf

—Freisleben, Bernd and Merz, Peter. ”New Genetic Local Search Opera-

6

tors for the Traveling Salesman Problem”. http://www.rfai.li.univ-tours.fr/pagesperso/rousselle/docum/pdf/ppsn96.pdf
—Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., and Dizdarevic,

S. ”Genetic Algorithms for the Travelling Salesman Problem: A Review of
Representations and Operators”. http://wedhusprucul.tripod.com/skripsi/tsp.pdf

—University of Heidelberg Department of Computer Science. ”TSPLIB”.
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

—Voudouris, Christos. ”Guided Local Search and Its Application to the
Traveling Salesman Problem”. http://www.cs.essex.ac.uk/CSP/papers/VouTsa-
GlsTsP-Ejor98.pdf

6 Appendices

6.1 An Overview of the Traveling Salesman Problem

The Traveling Salesman Problem is a problem in which a set of points is
given and you want to find the shortest path that travels between each point
once and then returns to the starting point. A symmetric problem is one
in which the distance between towns A and B is the same as the distance
between towns B and A. An Asymmetric problem is one in which the distance
between towns A and B is different from the distance between towns B and
A.

6.2 What is a Genetic Algorithm?

A Genetic Algorithm is a process for an algorithm that simulated genetics.
First a pool of solutions is generated. Then for each generation of the pro-
gram that is run, 2 of the solutions in the pool are chosen at random. These
two solutions are then somehow combined to create a child solution. A fit-
ness function is then used to determine whether the child solution is better
than other solutions in the pool. If it is, then it will replace a solution in the
pool. This process continues for many generations, until an optimal solution
is found.

7

