
Computer Systems Research Paper 3rd
Quarter

Using Genetic Algorithms to Optimize the
Traveling Salesman Problem

2007-2008

Ryan Honig

April 4, 2008

1 Abstract

My goal is to create a program that can solve the Traveling Salesman Prob-
lem, finding near-optimal solutions for any set of points. I will use genetic
algorithms to try to find the optimal paths between the points. I will also
allow my program to find solutions to both symmetric and asymmetric trav-
eling salesman problems. In the end, after I create a working alorithm that
will find near optimal paths, I hope to create a graphic interface that will dis-
play the chosen points and the paths through those points as the algorithm
runs.

2 Purpose

The main purpose of my project is to develop my own genetic algorithm
that can hopefully find close to optimal solutions for the Traveling Salesman
Problem. Once this is done I hope to modify the program to work for asym-
metric problems and create a user interface that will graphically display the
current problem and run the algorithm to find a solution.

1

This is a good problem to tackle because it is fairly complex and deals
both with some complex algorithms and with some higher level math. By
finding an efficient and optimal solution to the traveling salesman problem,
it can be applied to the larger NP-complete field of optimization problems
which can contribute to many fields of study. The TSP has been around
for a long time, but more efficient programs for solving the TSPs are still
being created. Many different algorithms have been used to attempt to solve
TSPs, including heuristics, genetic algorithms, colony based simulations, and
pure brute force programs. Heuristics are the best for finding ’good’, but not
optimal, paths fairly quickly, while genetic algorithms take longer but find
more optimal paths. Brute force programs will of course always find the most
optimal solution, but it might take a near endless amount of time to do so.
The last general method, colony based simulations, are the most different of
the four main solving types, and while I don’t know as much about them as I
do the other types, I know that they can be used to find very good solutions
in a relatively short amount of time.

The paper: ”New Genetic Local Search Operators for the Traveling Sales-
man Problem” by Bernd Freisleben and Peter Merz details how a good way
to create an algorithm for the Traveling Salesman Problem is to use a basic
heuristic to find the initial pool of paths and then use the genetic algorithm
on this pool of paths to find a near-optimal solution. I hope to build off of
this approach by creating an algorithm that will work for both symmetric
and asymmetric TSPs. Another approach that is detailed by Marco Dorigo
and Luca Maria Gambardella in ”Ant Colonies for the Traveling Salesman
Problem” is to use a simulated ant colony to solve a TSP data set. While this
is not the most efficient way of solving a TSP, it can find very near-optimal
solutions. One of the most interesting articles that I found on the Travel-
ing Salesman Problem is ”Genetic Algorithms for the Traveling Salesman
Problem: A Review of Representations and Operators”. This article does a
comparison of the different types of algorithms used to solve TSPs and their
different way of representing the data. The question that I would like to
answer through my project is what combination of algorithms can create the
most efficient and optimal traveling salesman program.

2

3 Development

3.1 Initial algorithm

With my project, I would like to develop an efficient algorithm that can
find near-optimal solutions for both symmetric and asymmetric traveling
salesman problems and then incorporate it into a user interface that will run
the algorithm and display the paths that the algorithm comes up with. My
algorithm will be a mix of basic heuristics and the more complex genetic
algorithms.

I began by creating a program that used a simple genetic algorithm that
would reverse a section of a parent path which would then be replaced in the
pool if it had a shorter path than the parent. I began testing this with data
sets that can be found here: http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.
After finding that my solutions were off by multiple powers of ten, I discarded
that algorithm and began a new one.

3

3.2 Genetic Algorithm

A B

C

D

E

A

A A

A
A

B

B

B

B
B

Combined Path

B
A B

C

D

E

A

A

B

B

Child

A AB B

C C

D D

E E

Parent A Parent B

This new algorithm starts by creating an initial pool of fifty random,
legal paths. For each iteration of the genetic algorithm it will then select two
parent paths at random to create a child path from. All of the links between
each point on the parent path are then compiled into one set of links. The
program will then alternate choosing a link from each of the two parents to
create the crossover. If the program gets stuck on a node and cannot create
a legal link from the parent links, then a greedy algorithm takes over and
completes the broken path.

4

3.3 Mutation Algorithm

E B F D G A C

R1 R2

E A G D F B C

During second quarter I created a mutation method. This mutation
method keeps the pool from being populated by the same path, since it
has a chance of changing one of the pools in the path. My mutation method
has a one in fifty chance of occuring. When a mutation does occur, two
points are selected at random on the path, and then the path in between
these two points is reversed. Once my mutation method was implemented,
it significantly helped my program because it allowed the pool to continue
running even if it got stuck on a single path that wasn’t anywhere close to
the optimal solution.

5

3.4 Pool Generating Heuristic

A B

C

D

E

A

A BA

E

A B

C

A B

D

A

D

E

A B

E

Initial In Order Path

During second quarter, I also created a heuristic to generate the initial
pool of paths. I created the heuristic, hoping that it would produce better
results by starting with a pool that isn’t random and it might even be faster.
The heuristic I devised will first pick a random point out of all of the points
the salesman must travel to. It then finds which two other points are the
closest to that point and begins two paths starting at the first point, and
going to each of the other two points. Then, for each of those two points,
it finds the next two closest points, and creates two more new paths, thus
doubling the number of paths being made. It continues doing this until there
are enough points to fill the pool, at which point it will just continue by
picking the next closest point, until a full traverse of the points is acheived.
I will discuss how this heuristic did in my results section.

6

3.5 Asymmetric Travelling Salesman Program

Asymmetric Travelling
Salesman Problem

A BDistance = 100

Distance = 200

During third quarter, I spent much of my time working on converting my
original random pool program so that it could read in and find near-optimal
solutions to asymmetric travelling salesman problems. In an asymmetric
traveling salesman problem, the distance between any pair of points is differ-
ent whether it is going from A to B or B to A. I am currently working with
the data set BR17 which has 17 points. Although there are only 17 points
in this data set, since an asymmetric data set contains a distance for the
path there and back between every two pairs of points, the amount of data
in this data set is closer to the order of n-squared. So far, I have been able
to code my program so that it can read in all of this data and store it in two
matrices, one for going clockwise between pairs of points and one for going
counterclockwise between the pairs of points. I have also converted many of
my smaller methods, like the mutation method, the reverse method, and the
distance calculating method, so that they are compatible with the asymmet-
ric travelling salesman problems. I am currently working on converting my

7

genetic algorithm itself so that it is compatable with the asymmetric travel-
ing salesman problems, but I am finding that it is very difficult. Hopefully I
will be able to finish this conversion next quarter.

4 Results and Discussion

After testing my initial algorithm that reversed sections of the paths, I was
not surprised to find that my solutions to data sets were multiple powers of
ten off from the best known solutions. I knew that since my initial algorithm
was based off of single parent genetics, it would not work very well.

I then created the genetic algorithm that I am currently using. When I
first began testing this algorithm, my program would often fill up its pool
with copies of the same path, which would prevent it from finding a solution
any better than that one. In order to correct this I implemented a mutation
method to free up the pool. This worked and my program ran pretty well.

I then created my heuristic, hoping that it would produce better results
by starting with a pool that isn’t random, and possibly even be faster. When
testing the heuristic program with the same data sets that I used to test the
program with the randomly generated pool, I found that the solutions were
slightly better, but the program took mush longer to run.

8

Average
Run Time

Average (of
5 runs)

Average
Run time

Average (of
5 runs)

Data Set /
Best solution

Heuristic ProgramRandom Pool Program

A280: 2579

ATT48: 10628

BAYG29: 1610

BAYS29: 2020

CH130: 6110

 2780.54

12017.46

1750.92

2385.34

6493.65

 2729.37

12104.32

1683.84

2327.77

6387.37

1.75 sec

2.31 sec

1.33 sec

1.86 sec

2.76 sec

3.03 sec

4.71 sec

2.42 sec

2.81 sec

4.54 sec

Testing the random-pool program
against the Heuristically generated

pool program

As you can see from my data, while the heuristically-generated pool pro-
gram found slightly better solutions on most of the data sets, with the ex-
ception of data set ATT48, on every case it took almost twice as long to
run than the randomly generated pool program did. I am currently not sure
whether I will stick to using the randomly generated pool program or the
heuristically generated pool program.

5 Bibliography

—Dorigo, Marco and Gambardella, Luca Maria. ”Ant colonies for the Travel-
ing Salesman Problem”. http://code.ulb.ac.be/dbfiles/DorGam1997bio.pdf

—Freisleben, Bernd and Merz, Peter. ”New Genetic Local Search Opera-
tors for the Traveling Salesman Problem”. http://www.rfai.li.univ-tours.fr/pagesperso/rousselle/docum/pdf/ppsn96.pdf

—Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., and Dizdarevic,
S. ”Genetic Algorithms for the Travelling Salesman Problem: A Review of
Representations and Operators”. http://wedhusprucul.tripod.com/skripsi/tsp.pdf

9

—University of Heidelberg Department of Computer Science. ”TSPLIB”.
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

—Voudouris, Christos. ”Guided Local Search and Its Application to the
Traveling Salesman Problem”. http://www.cs.essex.ac.uk/CSP/papers/VouTsa-
GlsTsP-Ejor98.pdf

—Yang, Cheng-Hong and Nygard, Kendall E. The effects of initial pop-
ulation in genetic search for time constrained traveling salesman problems.
http://portal.acm.org/citation.cfm?id=170791.170875-coll=Portaldl=ACM-CFID=15521145-
CFTOKEN=37709823

6 Appendices

6.1 An Overview of the Traveling Salesman Problem

The Traveling Salesman Problem is a problem in which a set of points is
given and you want to find the shortest path that travels between each point
once and then returns to the starting point. A symmetric problem is one
in which the distance between towns A and B is the same as the distance
between towns B and A. An Asymmetric problem is one in which the distance
between towns A and B is different from the distance between towns B and
A.

6.2 What is a Genetic Algorithm?

A Genetic Algorithm is a process for an algorithm that simulated genetics.
First a pool of solutions is generated. Then for each generation of the pro-
gram that is run, 2 of the solutions in the pool are chosen at random. These
two solutions are then somehow combined to create a child solution. A fit-
ness function is then used to determine whether the child solution is better
than other solutions in the pool. If it is, then it will replace a solution in the
pool. This process continues for many generations, until an optimal solution
is found.

10

