
Computer Systems Final Research Paper
Using Genetic Algorithms to Optimize

Traveling Salesman Problems
2007-2008

Ryan Honig

June 9, 2008

1 Abstract

In this paper I will discuss a genetic approach to finding near-optimal soltu-
ions to Traveling Salesman Problems. I will also discuss how using a heuristic
to generate an initial pool affects the run time and solutions found by my
program. Lastly, I will discuss the difficulties in creating a program to find
near-optimal solutions to asymmetric traveling salesman problems.

2 Purpose and Background

The main purpose of my project is to develop my own genetic algorithm that
can find near-optimal solutions for symmetric Traveling Salesman Problems.
Once this was done I made it my goal to create a program to find near-
optimal solutions to asymmetric Traveling Salesman Problems, but this goal
turned out to be very lofty and hard to achieve.

This is a good problem to tackle because it is fairly complex and deals
both with some complex algorithms and with some higher level math. By
finding an efficient and optimal solution to the traveling salesman problem,
it can be applied to the larger NP-complete field of optimization problems
which can contribute to many fields of study. The TSP has been around
for a long time, but more efficient programs for solving the TSPs are still

1



being created. Many different algorithms have been used to attempt to solve
TSPs, including heuristics, genetic algorithms, colony based simulations, and
pure brute force programs. Heuristics are the best for finding ’good’, but not
optimal, paths fairly quickly, while genetic algorithms take longer but find
more optimal paths. Brute force programs will of course always find the most
optimal solution, but it might take a nearly endless amount of time to do so.
The last general method, colony based simulations, are the most different of
the four main solving types, and while I don’t know as much about them as I
do the other types, I know that they can be used to find very good solutions
in a relatively short amount of time.

The paper: ”New Genetic Local Search Operators for the Traveling Sales-
man Problem” by Bernd Freisleben and Peter Merz details how a good way
to create an algorithm for the Traveling Salesman Problem is to use a basic
heuristic to find the initial pool of paths and then use the genetic algorithm
on this pool of paths to find a near-optimal solution. This is the structure
that one of the versions of my program took. Another approach that is de-
tailed by Marco Dorigo and Luca Maria Gambardella in ”Ant Colonies for
the Traveling Salesman Problem” is to use a simulated ant colony to solve a
TSP data set. While this is not the most efficient way of solving a TSP, it
can find very near-optimal solutions. In a colony based simulation such as
this, the program will run through a pool of paths, and if part of a path is
found to be effective, more parts of the colony will travel it and label it as an
effective path. One of the most interesting articles that I found on the Trav-
eling Salesman Problem is ”Genetic Algorithms for the Traveling Salesman
Problem: A Review of Representations and Operators”. This article does a
comparison of the different types of algorithms used to solve TSPs and their
different way of representing the data. The biggest question that I would like
to answer through my project is what combination of algorithms can create
the most efficient and optimal traveling salesman program.

3 Development

3.1 Initial Algorithm

With my project, my goals was to develop an efficient algorithm that can
find near-optimal solutions for both symmetric and asymmetric traveling
salesman problems. My algorithm will be a mix of basic heuristics and the

2



more complex genetic algorithms.
I began by creating a program that used a simple genetic algorithm that

would reverse a section of a parent path and then replace it in the pool if
it had a shorter path than the parent. I began testing this with data sets
from the TSPLib website, which can be found here: http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/. After finding that my
solutions were off by multiple powers of ten, I discarded that algorithm and
began a new one.

3.2 Genetic Algorithm

A B

C

D

E

A

A A

A
A

B

B

B

B
B

Combined Path

B
A B

C

D

E

A

A

B

B

Child

A AB B

C C

D D

E E

Parent A Parent B

With my new program, I decided to take an approach that combined a few
different genetic algorithm techniques that I read about during my research.
This new algorithm starts by creating an initial pool of fifty random, legal
paths. For each iteration of the genetic algorithm it will select two parent
paths at random from the pool and use them to create a child path. In order
to do this, all of the links between each point on both of the parent paths are
then compiled into one set of links. The program then alternates choosing
a link from each of the two parents to create the crossover. If the program
gets to a point where none of the next links that it can choose from are legal,
then a greedy algorithm takes over and completes the broken path by linking

3



to the next closest, unused points.

3.3 Mutation Algorithm

E B F D G A C

R1 R2

E A G D F B C

During second quarter I created a mutation method. This mutation
method keeps the pool from being populated by the same path, since it
has a chance of changing one of the paths in the pool. When the genetic al-
gorithm runs it will continue filling the pool with the paths that it finds are
better than are already in it, so if one path is found to be slightly better than
all of the other paths, than the pool might begin to be filled with nothing
but that one path, having a mutation method helps to fix this. My mutation
method has a one in fifty chance of occuring. When a mutation does occur,
two points are selected at random on the path, and then the path in between
these two points is reversed. Once my mutation method was implemented,
it significantly helped my program because it allowed the pool to continue
running even if it got stuck on a single path that wasn’t anywhere close to
the optimal solution.

4



3.4 Pool Generating Heuristic

A B

C

D

E

A

A BA

E

A B

C

A B

D

A

D

E

A B

E

Initial In Order Path

During second quarter, I also created a heuristic to generate the initial
pool of paths. I created the heuristic, hoping that it would produce bet-
ter results more efficiently by starting with a pool that isn’t random. The
heuristic I devised first picks a random point out of all of the points from
the data set that the salesman must travel to. It then finds which two points
are the closest to that point. Two paths are then created starting at the first
point, and going to each of the other two new points. Then, for each of those
two points, it finds the next two closest points, and creates two more new
paths, thus doubling the number of paths being made. It continues doing
this, doubling the number of paths until it only creates enough to fill a pool
of fifty paths, thus filling the pool, at which point it will just continue using a
greedy algorithm by picking the next closest point, until a full traverse of the
points is acheived. I will discuss how this heuristic did in my results section.

5



3.5 Asymmetric Travelling Salesman Program

Asymmetric Travelling 
Salesman Problem

A BDistance = 100

Distance = 200

During third and fourth quarter, I spent much of my time working on
converting my original random pool program so that it could read in and
find near-optimal solutions to asymmetric travelling salesman problems. In
an asymmetric traveling salesman problem, the distance between any pair of
points is different whether it is going from A to B or B to A. This is used to
simulate the real world, in which going between two different places would
require you to take different routes. I am currently working with the data set
BR17 which has 17 points. Although there are only 17 points in this data
set, since an asymmetric data set contains a distance for the path there and
back between every two pairs of points, the amount of data in this data set
is actually 272 pairs of distances, which is closer to the order of n-squared.

While the data files for symmetric traveling salesman problems are in the
form of a list of coordinates, the data files for asymmetric problems consist
of a grid of the distances between the pairs of points. This was the first
thing to present major difficulties to my program. While I was initially able
to read this grid into a matrix in the program, I wasn’t totally sure how to
go about performing the genetic algorithm on this grid. I eventually came
up with the idea of creating two matrices of absolute coordinates for the
points. One would have the coordinates of the points if you were going in a
clockwise direction and one would have the coordinates of the points if you
were going in a counterclockwise direction. While this seemed like it might
work in theory, I still had a hard time getting my genetic algorithm to run
on it. After weeks of attempting to change my algorithm to run off of these

6



two sets of data, I found that I was nearing the end of fourth quarter, so I
decided to halt work on this part of the project. If next year, someone decides
that they want to continue work in this area, creating a genetic algorithm to
find optimal solutions to asymmetric traveling salesman problems would be
a great area to explore.

4 Results and Discussion

After testing my initial algorithm that reversed sections of the paths, I was
not surprised to find that my solutions to data sets were multiple powers of
ten off from the best known solutions. I knew that since my initial algorithm
was based off of single parent genetics, it would not work very well.

I then created the genetic algorithm to find better solutions. When I first
began testing this algorithm, my program would often fill its pool with copies
of the same path, which would prevent it from finding a solution any better
than that one. In order to correct this I implemented a mutation method to
free up the pool. This worked and my program ran a lot better.

I then created my heuristic, hoping that it would produce better results
by starting with a pool that isn’t random, and possibly even be faster. When
testing the heuristic program with the same data sets that I used to test the
program with the randomly generated pool, I found that the solutions were
only slightly better, but the program took mush longer to run.

7



Average 
Run Time

Average (of 
5 runs)

Average 
Run time

Average (of 
5 runs)

Data Set / 
Best solution

Heuristic ProgramRandom Pool Program

A280: 2579

ATT48: 10628

BAYG29: 1610

BAYS29: 2020

CH130: 6110

 2780.54

12017.46

1750.92

2385.34

6493.65

 2729.37

12104.32

1693.84

2327.77

6487.37

1.75 sec

2.31 sec

1.33 sec

1.86 sec

2.76 sec

5.11 sec

7.32 sec

4.32 sec

5.76 sec

6.43 sec

Testing the random-pool program 
against the Heuristically generated 

pool program

As you can see from my data, while the heuristically-generated pool pro-
gram found slightly better solutions on most of the data sets, with the ex-
ception of data set ATT48, on every case it took more than twice as long to
run than the randomly generated pool program did. In the end, I decided
that the amount of improvement offered by my heuristic was not enough to
justify the much longer run times that the program took.

5 Bibliography

—Dorigo, Marco and Gambardella, Luca Maria. ”Ant colonies for the Travel-
ing Salesman Problem”. http://code.ulb.ac.be/dbfiles/DorGam1997bio.pdf

—Freisleben, Bernd and Merz, Peter. ”New Genetic Local Search Opera-
tors for the Traveling Salesman Problem”. http://www.rfai.li.univ-tours.fr/pagesperso/rousselle/docum/pdf/ppsn96.pdf

—Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., and Dizdarevic,
S. ”Genetic Algorithms for the Travelling Salesman Problem: A Review of
Representations and Operators”. http://wedhusprucul.tripod.com/skripsi/tsp.pdf

—University of Heidelberg Department of Computer Science. ”TSPLIB”.
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

—Voudouris, Christos. ”Guided Local Search and Its Application to the
Traveling Salesman Problem”. http://www.cs.essex.ac.uk/CSP/papers/VouTsa-
GlsTsP-Ejor98.pdf

8



—Yang, Cheng-Hong and Nygard, Kendall E. The effects of initial pop-
ulation in genetic search for time constrained traveling salesman problems.
http://portal.acm.org/citation.cfm?id=170791.170875-coll=Portaldl=ACM-CFID=15521145-
CFTOKEN=37709823

6 Appendices

6.1 An Overview of the Traveling Salesman Problem

The Traveling Salesman Problem is a problem in which a set of points is
given and you want to find the shortest path that travels between each point
once and then returns to the starting point. A symmetric problem is one
in which the distance between towns A and B is the same as the distance
between towns B and A. An Asymmetric problem is one in which the distance
between towns A and B is different from the distance between towns B and
A.

6.2 What is a Genetic Algorithm?

A Genetic Algorithm is a process for an algorithm that simulated genetics.
First a pool of solutions is generated. Then for each generation of the pro-
gram that is run, 2 of the solutions in the pool are chosen at random. These
two solutions are then somehow combined to create a child solution. A fit-
ness function is then used to determine whether the child solution is better
than other solutions in the pool. If it is, then it will replace a solution in the
pool. This process continues for many generations, until an optimal solution
is found.

9


