
  

Using Genetic Algorithms to Optimize 
the Traveling Salesman Problem

By: Ryan Honig

Abstract
My goal is to create a program that can 

solve the Traveling Salesman Problem, 
finding near-optimal solutions for any set of 
points.  I will use genetic algorithms to try to 
find the optimal paths between the points.  I 
would also like to expand my algorithm so that 
it can solve both symmetric and asymmetric 
problems.  In the end, after I create a working 
algorithm that will find near optimal paths, I 
hope to create a graphic interface that will 
display the chosen points and the paths 
through those points as the algorithm runs.

What is the Traveling 
Salesman Problem

Traveling Salesman Problem (TSP) - a set of 
points is given. Try to find the shortest path 
that travels between each point once and 
returns to the starting point

Symmetric TSP - distance between towns A 
and B is the same as distance between towns 
B and A. 

 Asymmetric TSP - distance between towns A 
and B is different from distance between 
towns B and A.

Background
●Purely genetic approaches can find near optimal solutions, but take a 
long time
●Purely heuristic approaches can run very efficiently, but don't find very 
optimal solutions
●Many of the current best known solution algorithms use a combination 
of heuristics and genetic algorithms

Development
●I have a genetic algorithm that creates a pool, and then 
uses genetic crossovers within the pool to find the best 
solution
●I also have a mutation function that has a one in fifty 
chance of adding a variation into the pool by reversing a 
segment of a path, this helps to keep the pool from getting 
filled by copies of the same path
●I also created a heuristic that creates a better pool than 
the randomized pool, although it runs much slower
●During third quarter, I began work on converting my 
random pool program so that it can find near optimal 
solutions to asymmetric traveling salesman problems

Results

●As you can see from my data, while the heuristically-generated pool 
program found slightly better solutions on most of the data sets, with 
the exception of data set ATT48, on every case it took almost twice as 
long to run than the randomly generated pool program did.  I am 
currently not sure whether I will stick to using the randomly generated 
pool program or the heuristically generated pool program.

A AB B

C C

D D

E E

Parent A Parent B

A B

C

D

E

A

A A

A
A

B

B

B

B

B

Combined Path

B

A B

C

D

E

A

A

B

B

Child

How My Genetic 
Algorithm Works

Average 
Run Time

Average (of 
5 runs)

Average 
Run time

Average (of 
5 runs)

Data Set / 
Best solution

Heuristic ProgramRandom Pool Program

A280: 2579

ATT48: 10628

BAYG29: 1610

BAYS29: 2020

CH130: 6110

 2780.54

12017.46

1750.92

2385.34

6493.65

 2729.37

12104.32

1683.84

2327.77

6387.37

1.75 sec

2.31 sec

1.33 sec

1.86 sec

2.76 sec

3.03 sec

4.71 sec

2.42 sec

2.81 sec

4.54 sec

Testing the random-pool program against the Heuristically 
generated pool program

Symmetric
A BDistance = 100

Distance = 100

Asymmetric

A BDistance = 100

Distance = 200


