

Using Genetic Algorithms to Optimize the Traveling
Salesman Problem

By: Ryan Honig
Thomas Jefferson High School for Science and Technology Computer Systems Lab

2007-2008
Abstract

My goal was to create a program that can solve
the Traveling Salesman Problem, finding near-
optimal solutions for any set of points. I used genetic
algorithms to try to find the optimal paths between the
points. I compared the program ran when it was
using an initial random pool and when it was using an
initial heuristically generated pool. I also attempted
to modify my program to allow for asymmetric
travelling salesman problem input.

What is the Traveling
Salesman Problem

Traveling Salesman Problem (TSP) - a set of points
is given. Try to find the shortest path that travels
between each point once and returns to the starting
point

Symmetric TSP - distance between towns A and B is
the same as distance between towns B and A.

 Asymmetric TSP - distance between towns A and B
is different from distance between towns B and A.

Symmetric
A BDistance = 100

Distance = 100

Asymmetric
A BDistance = 100

Distance = 200

Development
I have a genetic algorithm that creates a pool, and then
uses genetic crossovers within the pool to find the best
solution
I also have a mutation function that has a one in fifty
chance of adding a variation into the pool by reversing a
segment of a path, this helps to keep the pool from getting
filled by copies of the same path
I also created a heuristic that creates a better pool than
the randomized pool, although it runs much slower
I also attempted to create a program that would solve
asymmetric travelling salesman problems. This proved to
be very difficult and I was not able to get it to work in the
end.

Background
Purely genetic approaches can find near optimal solutions, but have a long run
time
Purely heuristic approaches can run very efficiently, but don't find very optimal
solutions
Many of the current best known solution algorithms use a combination of
heuristics and genetic algorithms

Results

As you can see from my data, while the heuristically-generated pool
program found slightly better solutions on most of the data sets, with the
exception of data set ATT48, on every case it took at least twice as much time to
run than the randomly generated pool program did. In the end, I concluded that
the benefit in solution length from the heuristic program was not enough to justify
the long run times.

Testing the random-pool program against the Heuristically
generated pool program

A AB B

C C

D D

E E

Parent A Parent B

How My Genetic
Algorithm Works

A B

C

D

E

A

A A

A
A

B

B

B

B

B

Combined Path

(includes all links from
both parents)

+

B

A B

C

D

E

A

A

B

B

Average
Run Time

Average (of
5 runs)

Average
Run time

Average (of
5 runs)

Data Set /
Best solution

Heuristic ProgramRandom Pool Program

A280: 2579

ATT48: 10628

BAYG29: 1610

BAYS29: 2020

CH130: 6110

 2780.54

12017.46

1750.92

2385.34

6493.65

 2729.37

12104.32

1693.84

2327.77

6487.37

1.75 sec

2.31 sec

1.33 sec

1.86 sec

2.76 sec

5.11 sec

7.32 sec

4.32 sec

5.76 sec

6.43 sec

Child Path

Future Research
If anyone wants to continue working in this field, they can:
Finish creating a program that finds solutions to the
asymmetric travelling salesman problems
Create a User Interface to visualize the paths as they are
created

	Slide 1

