The Applications of Image Processing Techniques to
Sign Language Recognition Through a Web Camera
Interface

Byron Hood

November 2, 2007



Abstract

Sign language recognition is the first step in a long road towards natural language pro-
cessing, or the ability for a computer to “understand” naturally spoken language. Such an
invention would drastically lessen the amount of time require for computer input, maybe
even by a factor of two. This project explores using image recognition techniques such
as edge detection and line detection to identify sign language in real time, using input
from an average web camera (“webcam”). When research is complete, it is expected that
the program will be able to identify most, if not all alphanumeric characters with a high
degree of accuracy.



1 Introduction

1.1 Purpose

The purpose of this project is to provide an interface for people who speak sign language
(whom I call “sign speakers”) to input into a computer using their native form of commu-
nication. Such input should theoretically increase their input speed twofold, as explained
in the Background section. In addition, such interpretation of sign language gestures and
hand positions is a first step towards fulfilling programmers’ dream of human-computer
interaction nearly as old as the machines themselves, natural language processing, or
the concept of a computer “understanding” naturally spoken (or in this case, signed)
language.

1.2 Scope

This project will require some research into sign language hand positions and gestures,
but more specific and deeper research is necessary into “image parsing” techniques (such
as edge detection, line-finding, and so on). Additionally, the program will attempt to
insert characters into the computer’s input system, and this will require some heavy
digging into either windowing system input code (so that the program can feed into
X windowing system input) or operating system-level input (so that the program can
emulate a keyboard). Data on hand positions will be stored in XML files read and parsed
during the running time to ease the process of editing hand positions and also to make
reading the said data simple when starting up; yet the project will also need some basic
research into XML parsing schemes and methods of storing the XML data in memory.

The final application will recognize and interpret only alphanumeric characters for
reasons of complexity. The further the program goes, the higher the complexity, which
follows an exponential path. With the addition of positions, the distinctions between
different positions (and therefore different letters) become smaller and less easily made.
Therefore, the first step is to detect a reasonable number of different characters, and then
to extend this basic program later on.

2 Background

In today’s society, people with auditory and locutory disorders usually opt to commincate
using sign language, a silent variation on the local language which uses body language:
gestures, mouthing, and hand/finger positions, instead of spoken words. Through ex-
tensive practice and use (as normal people might gain extensive practice speaking their
native language), many sign speakers are capable of “speaking” as fast as non-impaired
people speak orally, about 200 words per minute in normal conversation[2].

If the average word is taken to be six letters long and one accounts for a slight speedup
due to the short amount of time required to communicate a single letter, spelling a word
out letter by letter will likely reduce speed by a factor of four for both sign and oral
speakers. Nonetheless, this is a hefty 50 words per minute, and compares quite favorably
to average typing speeds. According to Karat, et. al. the average computer user can type
33 words per minute while copying text, and this drops to a mere 19 when composing|3].
Therefore, an average computer user will spend from two to three seconds typing any



given word, whilst a sign speaker (could he or she sign into a computer), would spend
half of that time. Finally, the “QWERTY” keyboard was designed expressly for the
purpose of slowing typists down (this is a throwback to the days of typewriters, to help
prevent jams). Therefore, a person signing has a double advantage over a person typing:
first of all, they are not inhibited by the popular keyboard, and secondly, they sign faster
than the average person types.

While extensive and highly specific research has been done in the field of computer
vision (as shown by the sheer number of books available on the subject), little has been
devoted to the recognition of sign language, and only one study|7] has considered using a
webcam-computer setup (most other modern research explores using a specialized glove
to transmit data back to the computer). This is for a combination of reasons: first of all,
processor power was formerly far too expensive and not powerful to process a multitude
of images (with a high enough resolution to distinguish sophisticated shapes such as the
human hand) in anything close to real time. Additionally, the keyboard has been—
and remains—an effective, flexible, cheap, and easily extensible tool for computer input.
Finally there is as of yet little demand for such a novel mechanism of input.

I have reviewed some background material, especially in image processing, much of
which explained techniques such as Hough’s transform for finding shapes[4], and the
Robert’s Cross edge detection algorithm (where R is the result and P, P,, P, and P, are
the pixels above, below, to the left, and to the right, respectively, of the pixel on which
the edge detection is being performed):

R= /(P = PB)*+ (P, - R)? (1)

As very little substantial work (outside of Kraiss and Zieren’s research|[7]) has been done
in this field, I am pretty much a pioneer and I must decide what path to follow on my own
with little outside guidance from previous products and plans. This adds a new element
of interest for me: success means that my program is one of the first of its kind in the
world.

3 Development

3.1 Requirements and Limitations

A part of this project is to provide a relatively portable interface for human-computer
interaction with a webcam. Therefore, the requirements of this program are rather ba-
sic. All that is necessary is a webcam—the basis of the application—and the associated
drivers, a computer with Linux installed, and finally Video 4 Linux. To compile from
source, a C compiler is also necessary.

In terms of sign language recognition, the boundaries of this program will exist in
terms of letters “understood” and accuracy. To simplify matters, the first program will
only deal with alphanumeric characters, to provide a large enough distinction between
letters to minimize some of the factors that might otherwise impede position recognition.
In addition, the program will also have a limited quantity of time in which to analyze
each frame, ranging from }1 to % of a second. The goal of acting in real time precludes any
deep analysis of each image, and so therefore the program will inherently be somewhat
inaccurate (although this may not be as much of a disadvantage as it seems; people make
many mistakes at their keyboards as well).



3.2 Plan for Development

Originally, my plan was to program in the order of most testable programs first: first
edge detection, then line-finding, then a line-interpreting Al, and finally an image-capture
program to “grab” frames from a webcam. I soon found out, however, that this was
impractical because the only good way to test a line-finding Al is to use a variety of
images representing a variety of letters (otherwise I might just end up fine-tuning to
a specific letter or image thereof and breaking compatibility with other letters). The
best way to generate a multitude of realistic images is to capture them from a webcam,;
therefore my plan changed. Instead, I am working on perfecting a capture mechanism
first, and then line finding and interpretation (I have already completed the edge detection
phase). In brief, my plan is to program in the order of execution in the planned final
product.

3.3 Testing and Analysis

The plan for testing my program(s) is rather straightforward: I will use a Python script
to run each program several times and report the results and timing. Afterwards, I will
inspect the image results from each portion (except the line-interpreting Al) to ensure
that it is correct. In each circumstance, I will test ordinary conditions/images, boundary
conditions/images, and images or conditions which should be discarded. For example,
some very basic testing of four algorithms yielded these times:

A
500+
)
g 400+ 350-420ms
© 300+ 260-300ms
L=
g
E 200+
=
100+ 80-100ms
R —
- Video Edge Line
capture detection finding time

program being run

This graph shows that the total processing time per frame is currently around 400ms,
very much higher than the ceiling of 250ms per frame so that I can interpret sign language
in real time at an acceptable pace.



References

1]

2]

Brown, C. M. (1988). Human-computer interface design guidelines. Norwood, NJ:
Ablex Publishing

Omoigui, N., He, L., Gupta A., Grudin, J. and Sanocki, E. (1999). “Time-
compression: Systems concerns, usage, and benefits.” Chicago 1999 Conference Pro-
ceedings, 136-143.

Karat, C. M., et. al. “Patterns of entry and correction in large vocabulary continuous
speech recognition systems.” Chicago 1999 Conference Proceedings, 568-575.

Foregger, Thomas. “Hough Transform.” 06 Aug 2006. PlanetMath. 28 Sept 2007.
<http://planetmath.org/encyclopedia/HoughTransform.html>

<http://paginas.terra.com.br/informatica/gleicon/video4linux/videodog.html>

“Typewriter.” Wikipedia, <http://en.wikipedia.org/wiki/Typewriter>
Zieren, Jorg and Kraiss, Karl-Freidrich. “Robust
Person-Independent Visual Sign Language Recognition.”

<http://www.springerlink.com/content /u5bhmbkldruml981/>



