
The Applications of Image Processing Techniques to
Sign Language Recognition Through a Web Camera

Interface

Byron Hood

April 2, 2008

Abstract

Sign language recognition is the first step in a long road towards natural lan-
guage processing, or the ability for a computer to “understand” naturally spoken
(or signed) language. Such an invention would drastically lessen the amount of
time required for user-computer interaction, by as much as a factor of two. This
project explores using image processing techniques such as edge detection, line de-
tection, and line interpretation to identify sign language as it is performed, using
frame-based input from an average web camera (“webcam”). When research and
programming is complete, it is expected that the program will be able to iden-
tify the sign language gestures for alphanumeric characters with a high degree of
accuracy, in real time.

1 Introduction

1.1 Purpose

The purpose of this project is to provide an interface for people who use sign language
for everyday communication with others (referred to as “sign speakers”) to enter input
into a computer using their native form of communication. Such input could theoretically
increase their input speed twofold (see the explanation under Background) or possibly
even more. In addition, such interpretation of sign language gestures and hand positions
is a first step towards fulfilling a dream of human-computer interaction nearly as old as
the machines themselves: natural language processing, or the concept of a computer “un-
derstanding” naturally spoken (or in this case, signed) language and performing actions
based on the gestures or speech interpreted.

1.2 Scope

This project will require some research into sign language hand positions and gestures,
but more specific and deeper research is necessary into “image parsing” techniques. These
include edge detection, line-finding, and methods of line classification. Additionally, as
the program will attempt to insert characters into the computer’s input system, this
will require some heavy digging into either windowing system input code (so that the

1

program can feed into X windowing system input) or operating system-level input (so
that the program can effectively emulate a keyboard or other such input device). Further,
considering that data concerning hand positions will be stored in XML files to be read
and parsed during the running time, to ease the process of editing hand positions, and
also to make reading the said data simple when starting up; yet the project will also need
some basic research into XML parsing schemes and methods of storing the XML data in
memory.

To limit the overall complexity of the program, the final application will recognize
and interpret only alphanumeric characters. The further this program goes in terms of
recognizing additional characters, the more hand positions necessary to differentiate all
of these different symbols. If the program continues to expand, the hand positions, by
necessity, will become closer to each other and distinctions between different characters
are made smaller and more difficult to determine. This, in turn leads to a higher rate of
error; error that increases exponentially as one adds symbols to be recognized. A more
practical approach, therefore, is to designate a reasonable number of different characters,
and then to extend this basic program later on as image processing techniques improve
and the rate of error decreases.

2 Background

In today’s society, people with auditory and locutory disorders usually opt to commincate
using sign language, a silent variation on the local language which uses body language:
gestures, mouthing, and hand/finger positions, instead of spoken words. Through ex-
tensive practice and use (as normal people might gain extensive practice speaking their
native language), many sign speakers are capable of “speaking” as fast as non-impaired
people speak orally, about 200 words per minute in normal conversation[2].

If the average word is taken to be six letters long and one accounts for a slight speedup
due to the short amount of time required to communicate a single letter, spelling a word
out letter by letter will likely reduce speed by a factor of four for both sign and oral
speakers. Nonetheless, this is a hefty 50 words per minute, and compares quite favorably
to average typing speeds. According to Karat, et. al. the average computer user can type
33 words per minute while copying text, and this drops to a mere 19 when composing[3].
Therefore, an average computer user will spend from two to three seconds typing any
given word, whilst a sign speaker (could he or she sign into a computer), would spend
half of that time. Finally, the “QWERTY” keyboard was designed expressly for the
purpose of slowing typists down (this is a throwback to the days of typewriters, to help
prevent jams). Therefore, a person signing has a double advantage over a person typing:
first of all, they are not inhibited by the popular keyboard, and secondly, they sign faster
than the average person types.

While extensive and highly specific research has been done in the field of computer
vision (as shown by the sheer number of books available on the subject), little has been
devoted to the recognition of sign language, and only one study[7] has considered using a
webcam-computer setup (most other modern research explores using a specialized glove
to transmit data back to the computer). This is for a combination of reasons: first of all,
processor power was formerly far too expensive and not powerful to process a multitude
of images (with a high enough resolution to distinguish sophisticated shapes such as the

2

human hand) in anything close to real time. Additionally, the keyboard has been—
and remains—an effective, flexible, cheap, and easily extensible tool for computer input.
Finally there is as of yet little demand for such a novel mechanism of input.

2.1 Methods & Concepts

2.1.1 Edge detection

“Edge detection” is the process of highlighting differences in pixel intensity and pixel
color over an image. It follows that an “edge” in this context is a small area of an image
where either pixel intensity or pixel color is changing rapidly. At the very beginning of
the research associated with this project, I analyzed various methods of doing this, listed
below.

Horizontal differencing This method, along with vertical differencing, is the fastest
and the least computationally intensive. However, the speed comes at a cost: this method
is highly inaccurate and only manages to find edges with any degree of accuracy when
these edges are near to vertical, or, rather, when (part of) the image is changing rapidly
from left to right. The equation for this method is

V = |Pt − Pb| (1)

where V is the value of the computed pixel in a new image which contains the outline of
the image being subjected to edge detection, Pt is the value of the pixel above the current
pixel, and Pb is the value of the pixel below the current pixel. This equation is applied
to every pixel in the image, not including the top and bottom rows. If the differences
are in a vertical direction, then this method will not recognize them. I quickly discarded
this method of edge detection because a very important part of the edges formed by the
outline of a hand would be missed by this method.

Vertical differencing This method of edge detection is nearly identical to horizon-
tal differencing, explained above, except that this method registers changes in a vertical
perspective. In the same way that horizontal difference’s great weakness is missing any
changes which occur vertically, this method does not record any edges which occur hori-
zontally. And just as horizontal differencing is inadequate for the purposes of detecting
the edges in a hand, vertical differencing misses crucial horizontal differences. The equa-
tions are also very similar:

V = |Pl − Pr| (2)

where V is again the value of the computed pixel in a new image which contains the
outline of the image being subjected to edge detection, Pr is the value of the pixel to the
right of the current pixel, and Pl is the value of the pixel to the left of the current pixel.
I discarded this relatively quickly as well for the same reasons as I discarded horizontal
differencing.

Robert’s Cross Although strikingly simple, the Robert’s Cross method delivers good
results for edge detection. Although not superb, because it misses the finest details, it
finds all necessary lines. Plus, it minimizes the amount of noise from the joints of fingers

3

and the joints between the fingers and the palm. The equation for Robert’s Cross, applied
to every pixel, is:

R =
√

(Pt − Pb)2 + (Pr − Pl)2 (3)

Where V is the value and Pt, Pb, Pl, and Pr are the pixels above, below, to the left, and to
the right, respectively, of the pixel on which the edge detection is being performed. I did
not immediately discard this method as it performed reasonably well. My final decision
was for this method because it is the best balance between detecting too little and too
much, and also was not overly intensive on the processor.

Sobel’s Operator This method performed even better than Robert’s Cross in terms of
finding the edges in an image. While Robert’s Cross might find faint traces of small, non-
distinct edges, Sobel’s operator would highlight those strongly and find edge where the
eye couldn’t have found a difference. This precision was made possible by the following
operations, assuming the pattern

a b c
d e f
g h i

around pixel e. The general idea of the equations is that they account for all eight of the
neighbors of each pixel, while Robert’s Cross accounts for only four, and horizontal and
vertical differencing two.

V =
√

(c + 2f + i − a − 2d − g)2 + (a + 2b + c − g − 2h − i)2 (4)

where V is the final value of the pixel. I eventually chose against this method, and
elected to continue with Robert’s Cross, for two reasons. First of all, this method is more
computationally intensive, and requires more memory accesses. While over a single pixel
the difference is negligible, the difference over 307,200 pixels (the number of pixels in a
640x480 image) is far greater. Secondly, this method highlights too much detail, bringing
out parts of the hand that I would prefer not to be visible in an image of edges.

2.1.2 XML Parsing

In modern computing, one of the most popular forms of data storage outside of databases
is in XML files. This is due to the regular and highly-structured nature of XML, which
allows parsers to easily sift through the file(s) and extract data in very little time. For
this project, I have chosen to use XML to store data because it is the perfect balance
between ease of entry of data and ease of reading for the computer. My program in-
cludes a very simple built-in XML parser: it would be unwise to simply rely upon an
XML parsing library, although these are effectively standard on all machines, numerous
difference libraries exist and each machine may have a different library or version of the
same library.

2.1.3 Computer input

Despite the very vital nature of this research, I have not yet dug into code or documen-
tation regarding inserting a new device into the input stream. If I seem likely to succeed,
however, I will look into this to make my application even more impressive.

4

2.2 Prior Research in this Field

As very little substantial work (outside of Kraiss and Zieren’s research[7]) has been done
in this field, I am pretty much a pioneer and I must decide what path to follow on my
own with little outside guidance from previous products and plans. This adds a new
element of interest for me: success means that my program is one of the first of its kind
in the world. Although others have performed studies and have even programmed sign
language recognition systems, they have all used some form of aid to recgonize the hand:
they have used a mechanical glove, or a colored glove, or a very specialized background.
I intend to write this with no such requirements.

3 Development

3.1 Requirements and Limitations

A part of this project is to provide a relatively portable interface for human-computer
interaction with a webcam. Therefore, the requirements of this program are rather ba-
sic. All that is necessary is a webcam—the basis of the application—and the associated
drivers, a computer with Linux installed, and finally Video 4 Linux. To compile from
source, a C compiler (preferably GCC) is also necessary. Also, for the present, due to
the nature of the croppnig program, a Python interpreter on a 32-bit x86 machine is
necessary.

In terms of sign language recognition, the boundaries of this program will exist in
terms of letters “understood” and accuracy. To simplify matters, the first program will
only deal with alphanumeric characters, to provide a large enough distinction between
letters to minimize some of the factors that might otherwise impede position recognition.
In addition, the program will also have a limited quantity of time in which to analyze
each frame, ranging from 1

4
to 1

2
of a second. The goal of acting in real time precludes any

deep analysis of each image, and so therefore the program will inherently be somewhat
inaccurate (although this may not be as much of a disadvantage as it seems; people make
many mistakes at their keyboards as well).

3.2 Plan for Development

Originally, my plan was to program in the order of most testable programs first: first
edge detection, then line-finding, then a line-interpreting AI, and finally an image-capture
program to “grab” frames from a webcam. I soon found out, however, that this was
impractical because the only good way to test a line-finding AI is to use a variety of
images representing a variety of letters (otherwise I might just end up fine-tuning to
a specific letter or image thereof and breaking compatibility with other letters). The
best way to generate a multitude of realistic images is to capture them from a webcam;
therefore my plan changed. Instead, the work plan has been more focused on finishing
something within the timeframe of this year. As camera interaction might be the least
important part of this program, considering that it would not impair the operation of
the rest of the application, I have stopped working on that in favor of such subprojects
as a mutable list structure, an image IO library, and line finding/interpretation. In this
manner, I have completed nearly all of the project except of the camera interaction.

5

In fact, device control is often considered to be one of the most time-consuming and
tedious tasks to program. It requires precise, almost perfect control code, or the results
will not work. This, in turn requiers many hours of patient debugging and testing to iron
out bugs and issues, figure out why the code does not work, and so on. The rest of te
application, by contrast, is far easier to code and therefore must faster to finish.

If the application with the exception of hand-camera interaction is finished, there will
not really be an issue with functionality, because the basic function of the program is
present and other options exist to make the webcam portion work properly.

3.3 Testing and Analysis

The plan for testing my program(s) is rather straightforward: I will use a Python script
to run each program several times and report the results and timing. Afterwards, I will
inspect the image results from each portion (except the line-interpreting AI) to ensure
that it is correct. In each circumstance, I will test ordinary conditions/images, boundary
conditions/images, and images or conditions which should be discarded. For example,
some very basic testing of four algorithms yielded these times:

This graph shows that the total processing time per frame is currently around 280ms,
a little bit higher than the ceiling of 250ms per frame so that I can interpret sign lan-
guage in real time at an acceptable pace. However, this calculation does no include line
interpretation, so this figure of 280ms is subject to increase.

The testing environment for this program has been on two machines. The first is a
standard Gentoo Linux x86 installation with the GNU C Library (glibc). The second is
another standard Gentoo Linux installation, but for x86 64 (64-bit processor), again with
the GNU C Libary installed. Both computers used GCC ¿=4.1.2 to compile the source

6

code.

References

[1] Brown, C. M. (1988). Human-computer interface design guidelines. Norwood, NJ:
Ablex Publishing

[2] Omoigui, N., He, L., Gupta A., Grudin, J. and Sanocki, E. (1999). “Time-
compression: Systems concerns, usage, and benefits.” Chicago 1999 Conference Pro-
ceedings, 136-143.

[3] Karat, C. M., et. al. “Patterns of entry and correction in large vocabulary continuous
speech recognition systems.” Chicago 1999 Conference Proceedings, 568-575.

[4] Foregger, Thomas. “Hough Transform.” 06 Aug 2006. PlanetMath. 28 Sept 2007.
<http://planetmath.org/encyclopedia/HoughTransform.html>

[5] <http://paginas.terra.com.br/informatica/gleicon/video4linux/videodog.html>

[6] “Typewriter.” Wikipedia, <http://en.wikipedia.org/wiki/Typewriter>

[7] Zieren, Jörg and Kraiss, Karl-Freidrich. “Robust
Person-Independent Visual Sign Language Recognition.”
<http://www.springerlink.com/content/u5bhmbkldruml981/>

7

