

abstract

The Application of Image Processing Techniques to
Sign Language Recognition Using a Web Camera

Sign language recognition is the first step in a long road
towards natural language processing, or the ability for a
computer to “understand” naturally spoken language. Such
an invention would drastically lessen the amount of time
require for computer input, maybe even by a factor of two.
This project explores using image recognition techniques
such as edge detection and line detection to identify sign
language in real time, using input from an average web
camera (“webcam”). When research is complete, it is
expected that the program will be able to identify most, if not
all alphanumeric characters with a high degree of accuracy.

background & introduction
In today’s society, people with hearing and speaking disorders
communicate using sign language. Through extensive practice
and use (as people gain extensive practice speaking their
native language), sign speakers are capable of “speaking” as
fast as others speak orally, from 200-220 words per minute.
The average computer user types 33 words per minute when
transcribing and a mere 19 when composing. If the average
sign speaker can communicate using finger spelling at as little
as ¼ the pace of regular sign language, they sign 50 words per
minute. If they could sign into a computer, this would be a
significant speedup in computer input.

The image of a hand, to be
captured from a webcam.
Here we use the sign for “5.”

Edge
detection

 The hand after
edge detection
and cropping.

Parameterized lines:
L1: (0, 50) → (30, 95)
L2: (10, 45) → (45, 89)
 ...

Endpoints of the
lines found in the
picture (ex. right).

program
procedures

Line finding

Line-interpreting AI:
Analyzes all of the lines in
a given region and tries to
match them to a finger.

L1
L2

Similar
to pinky

Final result:
> ./main
 ...
Detected ‘5’ Testing & timing

The program will be tested manually
because automated testing would be highly
impractical and would require complex
image analysis. An example test would be
running a program five times, and recording
the time taken after each iteration, then
manually viewing the results after all
execution is complete.

Sample timing (done by the program):
> ./main
 ...
Edge detect time: 384ms

by Byron Hood
 Nov. 2, 2007

 1

abstract

The Application of Image Processing Techniques to
Sign Language Recognition Using a Web Camera

Sign language recognition is the first step in a long road
towards natural language processing, or the ability for a
computer to “understand” naturally spoken language. Such
an invention would drastically lessen the amount of time
require for computer input, maybe even by a factor of two.
This project explores using image recognition techniques
such as edge detection and line detection to identify sign
language in real time, using input from an average web
camera (“webcam”). When research is complete, it is
expected that the program will be able to identify most, if not
all alphanumeric characters with a high degree of accuracy.

background & introduction
In today’s society, people with hearing and speaking disorders
communicate using sign language. Through extensive practice
and use (as people gain extensive practice speaking their
native language), sign speakers are capable of “speaking” as
fast as others speak orally, from 200-220 words per minute.
The average computer user types 33 words per minute when
transcribing and a mere 19 when composing. If the average
sign speaker can communicate using finger spelling at as little
as ¼ the pace of regular sign language, they sign 50 words per
minute. If they could sign into a computer, this would be a
significant speedup in computer input.

The image of a hand, to be
captured from a webcam.
Here we use the sign for “5.”

Edge
detection

 The hand after
edge detection
and cropping.

Parameterized lines:
L1: (0, 50) → (30, 95)
L2: (10, 45) → (45, 89)
 ...

Endpoints of the
lines found in the
picture (ex. right).

program
procedures

Line finding

Line-interpreting AI:
Analyzes all of the lines in
a given region and tries to
match them to a finger.

L1
L2

Similar
to pinky

Final result:
> ./main
 ...
Detected ‘5’ Testing & timing

The program will be tested manually
because automated testing would be highly
impractical and would require complex
image analysis. An example test would be
running a program five times, and recording
the time taken after each iteration, then
manually viewing the results after all
execution is complete.

Sample timing (done by the program):
> ./main
 ...
Edge detect time: 384ms

by Byron Hood
 Nov. 2, 2007

