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Abstract

Collision detection is a very useful concept, it is used in various appli-
cations from surgery to manufacturing to video game design. The purpose
of this project is to create an efficient algorithm for detecting collisions
for use in a gaming environment. The objects in the simulation are sim-
ple solids, and the algorithm is designed to handle many solids at once
without a slowage of framerate.
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1 Introduction

The purpose of this project is to create an efficient algorithm for 3D collision
detection. This project has value because there are many different applica-
tions for collision detection, and in game development, as with all other fields,
efficiency is of extreme importance.

Collision detection is the concept of first detecting possible collisions, then
contact, and then determining how to react to the collision. My algorithm
is designed to detect multiple collisions without slowage. The first step in the
development was to create a simple 2D algorithm that would model collisions
as a prototype, followed by a simple 3D algorithm. This was then redesigned,
and then the number of solids in the given space was increased, and the time
taken and accuracy were tested. The results were graphed and analyzed.
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2 Background

An important setting in which this would be used is in game development. In
video games, it may be necessary for many objects to interact in space, and in
video games, there can be no slowages as they are supposed to be a real-time
simulation, and pauses for calculations cannot be accepted. Other applications
include surgery, as simulations are used in the preparation, machining and ani-
mation.

Some alorithms used include raytracing, which creates vectors, or ”rays” and
uses them to detect possible collisions. Others include using bounding solids
or using a simple point in polygon test, which is similar to raytracing. Another
method uses bounding surfaces to estimate when collisions take place. This
concept is also applied to more complex meshes by using separate surfaces for
each unique part of the mesh.

After conducting research, the system that most applies to my particular
project was determined to be variation on bounding surphaces where the number
of points checked is minimized by having the the bounding solid constantly
change its shape. This idea is called Non-static bounding solids.

The algorithm itself is an extension of the bounding solids concept. It sim-
plifies it by creating 360 vectors to simulate the presence of bounding sphere.
The algorithm would iterate over the points and check to see if there was an-
other solid there, and how close it was. In that way, collisions are detected.
The algorithm was further optimized by having the vectors constantly change
in length. The vectors start by having one vector at full length, with ever other
vector decreasing slightly as they get further away, until they reach the mini-
mum. The vectors then all decrease in length until they reach the minimum,
where they increase.

3 Development

This project is an effort to create a fast and efficient collision detection algo-
rithm. Success is considered a working algorithm that can successfully detect
collisions for one hundred solids without slowage. Anything less would be con-
sidered a failure.

The language used is C using OpenGL, because C is a powerful language
that can accomplish all my needs efficiently and has strong object orientation
built in. OpenGL is an easily accessible graphics library, which more than suits
my need for simple graphics.

The workplan for the project was as follows: write a 2D algorithm, then
write a 3D algorithm, then optimize the 3D algorithm or rewrite it to meet my
time constraints.

An interface was also created to help with the visualization of the algorithm.
This interface features a box which clearly marks the boundaries of the 3D area
in which the solids interact. The box can be rotated, providing a better view of
certain areas of interest if needed, and if a certain event needs to be re-examined,
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the program can also pause, rewind, and fast forward the simulation.

4 Discussion

The algorithm uses non-static pseudo-bounding surfaces to detect collisions.
These surfaces are supposed to simulate a constantly changing solid which is
designed to add minor calculations as a replacement for the necessary iterations
inherent in bounding surfaces. The algorithm further reduces the number of it-
erations by using equally distributed vectors all around the solid which represent
the bounding surface. Hence the name pseudo-bounding surface.

The algorithm itself is an extension of the bounding solids concept. It sim-
plifies it by creating 360 vectors to simulate the presence of bounding sphere.
The algorithm would iterate over the points and check to see if there was an-
other solid there, and how close it was. In that way, collisions are detected.
The algorithm was further optimized by having the vectors constantly change
in length. The vectors start by having one vector at full length, with ever other
vector decreasing slightly as they get further away, until they reach the mini-
mum. The vectors then all decrease in length until they reach the minimum,
where they increase.

5 Results

The frame rate was shown to experience exponential decay as the number of
solids increased. The frame rate stays relatively high throughout however, which
is a very good result, the algorithm was also found to be 100 percent accurate
for spheres and 98 percent accurate for other solids.

6 Conclusions

The project was deemed a success. The frame rate stayed at an acceptable level
(above 30 frames/sec) all the way up to 3217 solids, which is a better result than
expected. The shape of the graph was to be expected, because the algorithm
was designed to take a O(N2) function and reduce it to a smaller O(N2) rather
than to create a different algorithm that worked in different time.

An interesting direction that a new project may be taken in would be to
implement a tree hierarchy or other similar data structure to try to bring the
algorithm into logarithmic time.
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