

3D Collision detection for N
Solids in Open GL

Abstract
Collision detection is a very useful concept, it
is used in various applications from surgery to
manufacturing to video game design. My
project aims to create an efficient algorithm for
detecting collisions so that it can be used in a
gaming environment. The objects in collision
will be simple solids, and multiple will be put in
a space to monitor their interactions. The first
step is simple 2D collisions followed by more
complex 3D collisions.

Introduction
In this project, I plan to create an efficient
algorithm for 3D collision detection. This
project has value, because there are many
different applications for collision detection,
and in game development, as with all other
fields, efficiency is of extreme importance.
Collision detection is the concept of first
detecting possible collisions, then contact,
and then determining how to react to the
collision. I intend to create an efficient
algorithm that would detect collisions, so that
the interactions of multiple solids could be
modeled at once. The first step is to create a
simple 2D algorithm that would model
collisions as a prototype, followed by a
simple 3D algorithm. This would then be
optimized or redesigned, and then the
number of solids in the given space would be
increased, and the time taken and accuracy
would be tested. The goal is to have the
number of solids in space to be in the
thousands, but the first benchmark would be
in the hundreds.

Development
This project is an effort to create a fast and
efficient collision detection algorithm. Success
would be considered a working algorithm that
can successfully detect collisions for one
hundred solids (although one thousand would
be preferable). Anything less would be
considered a failure.
The language used would be C using OpenGL,
because C is a powerful language, and OpenGL
is an easily accessible graphics library.
The workplan for the project is as follows: write
a 2D algorithm, then write a 3D algorithm, then
optimize the 3D algorithm or rewrite it to meet
any time constraints.
So far the 2D and 3D algorithms have been
completed, and the next stage is to optimize the
3D algorithm. Unfortunately the current
algorithm is not very robust and only works with
certain solids. This problem will have to be
remedied before the project can continue.

Richard Hooepr

