

3D Collision Detection Using Non-
static Psuedo-bounding Surfaces

for N Solids

Abstract
Collision detection is a very useful concept, it is
used in various applications from surgery to
manufacturing to video game design. The
purpose of this project is to create an efficient
algorithm for detecting collisions for use in a
gaming environment. The objects in the
simulation are simple solids, and the algorithm is
designed to handle many solids at once without a
slowage of frame rate.

Introduction
The purpose of this project is to create an efficient
algorithm for 3D collision detection. This project
has value because there are many different
applications for collision detection, and in game
development, as with all other fields, efficiency is
of extreme importance.

Collision detection is the concept of first detecting
possible collisions, then contact, and then
determining how to react to the collision. My
algorithm is designed to detect multiple collisions
without slowage. The first step in the
development was to create a simple 2D algorithm
that would model collisions as a prototype,
followed by a simple 3D algorithm. This was then
redesigned, and then the number of solids in the
given space was increased, and the time taken
and accuracy were tested. The results were
graphed and analyzed.

Richard Hooper

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

20

40

60

80

100

120

140

160

180

200

Frame rates of Algorithm for tested levels of solids

F
ram

es/sec

Number of Solids

TJHSST Computer Systems Lab, 2007-2008

decrease in length until they reach the minimum,
where they increase.

Results
The frame rate was shown to experience
exponential decay as the number of solids
increased. The frame rate stays relatively high
throughout however, which is a very good result,
the algorithm was also found to be 100% accurate
for spheres and 98% accurate for other solids.

Conclusion
The project was deemed a success. The frame
rate stayed at an acceptable level (above 30
frames/sec) all the way up to 3217 solids, which is
a better result than expected. The shape of the
graph was to be expected, because the algorithm
was designed to take a O(N2) function and reduce
it to a smaller O(N2) rather than to create a
different algorithm that worked in different time.

An interesting direction that a new project may be
taken in would be to implement a tree hierarchy or
other similar data structure to try to bring the
algorithm into logarithmic time.

Discussion
The algorithm itself is an extension of the
bounding solids concept. It simplifies it by
creating 360 vectors to simulate the presence of
bounding sphere. The algorithm would iterate
over the points and check to see if there was
another solid there, and how close it was. In that
way, collisions are detected. The algorithm was
further optimized by having the vectors constantly
change in length. The vectors start by having one
vector at full length, with ever other vector
decreasing slightly as they get further away, until
they reach the minimum. The vectors then all

	Slide 1

