1

TJHSST Computer Systems Lab Senior
Research Project

First-Person PacMan
2007-2008

Brett Jones

October 26, 2007

Abstract

The purpose of this project is to create a 3D, first-person version
of the classic PacMan arcade game in order to learn more about the
concepts of 3D graphics programming and rendering algorithms. The
project will also include a basic Al to control the ghosts.

: Keywords: 3D graphics, rendering algorithms, Al

Introduction

1.1 Scope of Study

The program, for the purposes of this project, will only consist of the core
of the game; i.e., the program will only have the visual display (with control
inputs) and a basic Al for controlling the ghosts. The functions such as
save/load game, sound, customizing controls, high scores, etc. will be absent
from the project unless time permits the inclusion of these features; the 3D

graphics is the main focus of the project and thus has top priority.

1.2 Type of Research

This project is pure applied research.



2 Background

The field of 3D computer graphics has been explored quite extensively, and
comprises of three major parts: 3D modeling, animation, and 3D rendering.
The first part, 3D modeling, refers to creating a 3D representation of an
object. Animation, the second part, is moving the object through time. The
final part, 3D rendering, is drawing the animated 3D model to the screen.
3D rendering is the most complex of the three parts, and is done using one
of two algorithms: polygon modeling and ray tracing. Polygon modeling
is simply breaking the 3D model down into triangles and displaying the
triangles projected onto the 2D screen. Ray tracing computes a ray from the
camera through each pixel of the logical screen and traces it to any objects it
encounters, calculating the resulting reflected ray (if any) and tracing that,
repeating as many times as specified. Ray tracing is a recursive algorithm,
and is significantly more computationally expensive than polygon modeling
(some high-resolution complex images may take days to render), but gives a
more realistic view.

3 Progress

Currently, the program is coded to run in fullscreen exclusive mode (FSEM)
in order to display the game over the entire screen. The program runs with-
out errors, but does nothing beyond displaying the menu and entering FSEM.
The menu consists of a title image and seven function buttons: New Game,
Control, Sound, Save Game, Load Game, High Scores, and Quit. Quit ex-
its the program, New Game creates an instance of the World class (which
extends Frame) and sets the program to run in FSEM with the World class
as the viewable display, and the other buttons do not have any coded func-
tionality. The program does not yet do anything beyond entering FSEM;
since the World class doesn’t draw anything, the program turns the screen
to white. The World class reads in a 29x27 .txt file as a map, using 1 for
a wall; 0 for a food; 2 for a cherry; a, b, ¢, and d for the ghosts; and p for
the initial position of the camera. These objects are created and passed a
Point3d as a reference to where they exist in the 29x27 file (and thus the
map), and then added to a BranchGroup to be displayed.



4 Procedures and Methodology

The program will be coded with Java and Java3D using the JGRASP com-
piler. The main focus of the project will be the 3D graphics portion, which
should be completed by the end of second quarter. Afterwards, coding the
AT for the ghosts will commence, and once the Al is complete, most of the re-
maining programming time will be devoted to optimization/debugging, with
the addition of the extra features of a game mentioned above if time permits.
Visuals of the project will consist primarily of in-game screenshots.

The best test of the program is playing the game. Bugs that manifest them-
selves in the visible part of the program (such as ghosts moving through
walls, walls in the wrong plafce, etc.) will become apparent by playing the
game. Playing the game also provides a general idea for the runtime speed as
well, as the game will be noticeably laggy if the code isn’t efficient enough.
Another method for testing the efficiency of the code is the ”time” function
of the Linux Bash terminal. This function accepts a command as an argu-
ment (in this case, a call to the Java Virtual Machine to run the program)
and reports the total, user, CPU, and system times spent on the program.
The CPU time represents the processing time of the program, a key indica-
tor of efficiency (high numbers here are not good); the user time represents
how long the program was waiting for user input; the system time represents
how long the computer spent waiting for the program to run (a number that
should only be significant when many other programs are running on the
same system); and the total time is the sum of the user, system, and CPU
times.

4.1 System Requirements:

Operating System: Windows, Linux, or Solaris

CPU: TBA

RAM: TBA

Graphics Card: OpenGL 2.0 compatible graphics renderer
HDD Space: TBA



