
First-Person PacMan
by Brett Jones

TJHSST Computer Systems Lab 2007-2008

Abstract

The purpose of this project is to create
a 3D, first-person version of the classic
PacMan arcade game in order to learn
more about the concepts of 3D graphics
programming and rendering algorithms.
The project will also include a basic AI to
control the ghosts.

Background

Computer graphics is the science of creating
virtual representations of objects with computers.
 3D computer graphics is a subset of this field,
and specifically involves representing three-
dimensional scenes with a computer. The field
involves modeling (creating the virtual 3D
objects), animation (the movement of the models
through time), and rendering (projecting the 3D
scene onto a 2D screen), as well as
mathematics, notably matrix algebra.

The animation aspect of 3D computer
graphics is where much of the math is used, as
animations are generally created by applying
matrix transformations to a collection of the
scene's vertices. Rendering relies more on
geometry, both because a 3D scene must be
projected onto a 2D screen and because some
rendering algorithms depend on or restrict the
geometry of the scene. For example, ray
casting, a subset of ray tracing, requires right
angles - walls, for example, must be
perpendicular to the plane of the eye. Ray
tracing does not have this restriction, nor does
polygon modeling (also known as rasterization).
These two algorithms create realistic
representations of scenes; ray tracing is more so
(in both the method of implementation as well as
the resulting image), but it is considerably more
computationally expensive and is thus
uncommon for realtime rendering. This project
will use the native Java3D renderer, which uses a
rasterization algorithm.

An initial view of the scene, slightly raised, with wall colors
differentiated, and showing some of the cookies.

Progress

The program is coded to run in fullscreen exclusive mode
(FSEM) in order to display the game over the entire screen. The
program runs without errors and displays the scene objects, and
the view can be rotated. The menu consists of a title image and
seven function buttons: New Game, Control, Sound, Save
Game, Load Game, High Scores, and Quit. Quit exits the
program, New Game creates an instance of the World class
(which extends Frame) and sets the program to run in FSEM
with the World class as the viewable display, and the other
buttons do not have any coded functionality.

Inside the game, the program displays a black background
with randomly shaded blue cubes (the wall objects) connected in
the fashion of contiguous walls, white spheres for the cookies
with larger white spheres for the fruits, and accepts keyboard
input for motion and returning to the main menu (Figure 2). The
program allows motion throughout the scene, but does not allow
interaction with the scene; thus, the player can move through the
walls and cannot eat the cookies or fruits.

The program uses keyboard input to control the motion
through the scene. The right and left arrow keys turn the viewer
through a right angle to the right and left respectively, while the
up arrow sets the player to forward motion and the down arrow
turns the player around to face the opposite direction. The keys
do not need to be held down to work; a single tap of the
appropriate key will cause the program to perform the
appropriate function automatically. However, the forward
movement is the only function that performs continuously - the
turning functions perform once per keystroke. In addition, each
key can interrupt whatever function is currently being performed.
The program also listens for the P and Escape keys, which
pause the game and end it, respectively.

A screenshot showing the
cookies in the scene.

A screenshot of the
scene’s initial view, as of

04/02/08.

A screenshot showing a
slanted view of the scene
after using the encoded

rotational animation.

The images on this poster have inverted colors.

	Slide 1

