
TJHSST Senior Research Project

Particle Swarm Optimization and Social Interaction Between

Agents

2007-2008

Kenneth Lee

June 9, 2008

Abstract

Particle Swarm Optimization is a method of opti-
mization used in n-dimensional infinite search space
problems. This paper presents a test of different
social influences and topologies of the particle swarms
and comparisons between them. Social influence
of the particle swarm is a very crucial part of the
implementation and possible success of the particle
swarm. Specifically, it is the way in which the
particles communicate with each other in order to
find a global minimum. The different versions of the
social interactions are tested against each other using
various benchmark functions based upon iterative
cost to run the swarm.
Keywords: Particle Swarm Optimization, Fully
Informed Particle Swarm, Social Interaction.

1 Introduction - Purpose and
Scope

Particle Swarm Optimization(PSO) is a technique
used to search a n-dimensional infinite search space
for a global minimum. A relatively small amount
of particles exist, represented by a series of vectors,
in the search space and ”fly” though it searching for
the global minimum. Particles are influenced by both
cognitive and social interactions, which adjust each
particle’s velocity accordingly. This paper aims to al-

ter the social interactions from the canonical version
of PSO in an attempt to increase the efficiency of the
swarm.

If one of the proposed methods of social interaction
or topology is proven to be more efficient than the
others, it can replace the canonical method and thus
make the algorithm more efficient. Even if this is not
the case for all of the benchmark functions presented
it could give way to a broader discussion of which so-
cial interaction type should be used when, leading to
improved efficiency of the algorithm through tuning.

This project will deal only with the social interac-
tions between agents. It will not deal with inertia,
cognitive influence, or other facets of PSO, and those
facets will therefore remain constant throughout the
project. The efficiency of the particles will computed
and compared be by iteration count alone, not by
actual time to run the program. Thus, one should
note that there is a difference between iterative time
efficiency and real time efficiency and while one
social interaction could run in less iterations it is
not guaranteed to be the fastest in a real time cost
situation.

2 Background

PSO is a relatively new swarm intelligence technique.
It was first created in 1995, inspired from flocks of
birds and schools of fish [7]. As the technique pro-

1



Kenneth Lee 2 of 7

gressed, however, various modifications were made in
order to improve both reliability and time cost, elim-
inating much of the uncertainty from the algorithm.
As a result of this, the basic PSO used today was
formed. The basic PSO is primarily guided by two
equations:

−−→vt+1 = α−→vt + ϕ1(
−→
Pi −−→xt) + ϕ2(

−→
Pg −−→xt) (1)

−−→xt+1 = −→xt +−−→vt+1 (2)

Equation 1 shows the modification of the velocity
based upon the social interaction of the particle.
α signifies the inertial component of the velocity
modification. This acts as a way of dampening the
particle swarm’s movement. It has been suggested
that the inertial coefficient should start high and
decrease linearly with time[5]. ϕ1 and ϕ2 are random
numbers ∈ [0,1].

−→
Pi and

−→
Pg are the pBest and gBest

respectively. pBest is the best position found by the
particle during the course of the run. gBest, on the
other hand, is the best point found by the group over
the course of the run. −→xt is the position at time t,
and −→v is the velocity vector of the particle. The
adjustment to the velocity of the particle for a given
time t is the adjusted velocity plus the distance to the
pBest and gBest multiplied by some random number.

PSO was not analyzed in a purely analytical per-
spective until Clerc. In his work, Clerc describes
a simple one-dimensional, single-particle Particle
Swarm and then proceeds to rebuild the swarm back
to its original form. By doing this he created a
different form of Equation 1 above:

−−→vt+1 = X(−→vt + ϕ(
−→
Pm −−→xt)) (3)

This equation is equivilent to Equation 1, but is
simpler to compute. The value

−→
Pm is computed using

the following equation:

−→
Pm =

ϕ1Pi + ϕ2Pg

ϕ1 + ϕ2
(4)

[1] This is the weighted average of the points
−→
Pi and

−→
Pg[1]. The value X is a constriction coefficient which
lowers the values of the velocity function, in a way

bounding it, and is based upon ϕ. In the average
case, ϕ is equal to 4.1, which leads the X value to be
0.7298 [4].

PSO can be implemented for almost all n-
dimensional optimization problems, because it is
relatively easy to describe and implement. It is fast
compared to most other methods of optimization
and genetic algorithms[3][5]. The random weighting
between Pi and Pg allows the particles to search a
greater search space. The greater amount of search
space covered, the more accurate the solution will
be, therefore the random weighting by ϕ is very
important to the success of the particle swarm.[4]

2.1 Clustering and Neighbors

It has been suggested that there is strong correlation
between the amount of clustering, signified by C, and
number of neighbors, k [2]. C signifies the number of
neighbors in common between two particles averaged
over the entire swarm. k signifies the number of
connections a single particle has. The number of
neighbors indicates how many other particles the
specific particle gets information about the group
best from. For instance if an particle has 3 neighbors,
it only can determine its social influence from those 3
particles. This type of analysis is only applicable for
the Ring-Informed Particle Swarm, Fully-Informed
Particle Swarm, and Dynamically-Informed Particle
Swarm, however.

2.2 No Free Lunch Theorem

Though different types of social interactions have
been tested in the past, the conclusions have not
been conclusive [4]. This could be in part due to the
so-called No Free-Lunch Theorem, which states that
because there are so many numerous testing functions
that if all possible tests were performed over any
variant of the particle swarm algorithm, they would
all be equivalent on the average [6]. However, since
not all functions are being tested here, but rather
only a small subset wherein PSO has any significant
practical application, it is unclear as to whether the
No Free-Lunch has any hold in the actual grounding
in the case of research in social interactions for the

2



Kenneth Lee 3 of 7

algorithm. For the sake of the experiment and all
research into PSO we will assume that though the
NFL could be used to disprove the overall efficiency,
there still exists an interest in research in this field of
PSO [2].

3 Social Interactions

The social interactions currently covered by this
project include:

1. Non-Informed Particle Swarm(NIPS)

2. Singly Informed Particle Swarm(SIPS)

3. Fully Informed Particle Swarm(FIPS)

4. Ring Informed Particle Swarm(RIPS)

5. Dynamically Informed Particle Swarm(DIPS)

The section below will describe the different forms of
social interaction and how they are implemented and
act on the swarm.

3.1 Non-Informed Particle Swarm

NIPS works on a very basic principle that the par-
ticles do not in any way associate with each other.
The only method by which the particles velocities
are adjusted in any meaningful way is by cognitive
means, that is to say its pBest. The particles velocity
is updated by the following method:

−−→vt+1 = α−→vt + ϕ(
−→
Pi −−→xt) (5)

This equation is very similar to Equation 1, how-
ever it does not include the gBest influence. This has
the effect of effectively removing the swarm part of
Particle Swarm Optimization. This does not seem
to be an improvement to the swarm, because the
social interaction aspect of the swarm is a crucially
important one, but for the sake of having some sort
of control it will be used for this experiment.

3.2 Singly-Informed Particle Swarm

The Singly-Informed Particle Swarm is the one de-
fined in the Background section of this paper. For
this experiment Equation 1 was used instead of Equa-
tion 2 in order to make make it possible to decrease
the inertial weight, α as suggested by [5], with the
same experimental settings discussed therein. The
decrease of the intertial weight is defined by the
equation:

α = (α1 − α2)×
MAXITER− t

MAXITER
+ α2 (6)

In this equation, α1 is the original inertial coefficient
and α2 is the final coefficient. The symbol t is the
current iteration. With every iteration of the particle
swarm’s run the gBest of the swarm is recomputed
and compared to the previous iteration along with
each particles pBest.

3.3 Fully-Informed Particle Swarm

FIPS is different than SIPS in the way that it works.
Instead of having a single particle’s position be the
gBest for the entire swarm, FIPS uses input from
the entire swarm’s pBests. The point of this is to
overcome local optima which are not global optima.
By using the entire swarm as a source of influence,
secondary and tertiary pBest’s also play an important
role in the adjustment of the swarm’s velocity. In
order to do this, [4] suggests using Equation 3 instead
of Equation 1 to adjust the velocity. However,
instead of using the

−→
Pm suggested in Equation 4, the

following equation is used:

−→
Pm =

∑
k∈N W (k)ϕ

⊗
Pk∑

k∈N W (k)ϕ
(7)

The best point found by the swarm,
−→
Pm, is found

by adding all particle’s position vector multiplied by
W(k), a weighting factor of some sort. What is
actually contained in W(k) does not matter to a large
degree as it is averaged out over the entire swarm.
The weighting factor only determines to what extent
the particle is influential in the swarm, the higher
value of W(k) making the particle more influential.

3



Kenneth Lee 4 of 7

Instead of a single particle having all the influence
over the swarm, it is instead a weighted average of
the pBest’s of the entire swarm.[4]

3.4 Ring-Informed Particle Swarm

A RIPS differs from the Fully-Informed Particle
Swarm only in the fact that it has a different number
of neighbors. This smaller number of neighbors has
the effect of lagging data from one side of the swarm
to the other. Each particle determines its

−→
Pm value

only from the two particles to either side of it.
The benefit of having a smaller set of neighbors is

two-fold. First of all, it allows the program to run
faster per iteration by changing the θ(n2) running
time of FIPS to θ(n). This allows the program to run
more iterations of optimization in the same amount
of real run-time. Secondly RIPS has the advantage
of allowing for more exploration of the swarm in the
solution space. This can best be seen by determining
the diameter for the swarm. The diameter of a
swarm is the shortest distance for one particle to
reach another. In FIPS the diameter of the swarm
is one, meaning that it only takes one exchange of
information for any particle to reach another particle.
In RIPS however, the diameter of the swarm is n/2
for a n-sized swarm. This often times gives the
particles just a little more time to find the global
minimum in the solution space before convergence.
This tends to make RIPS more accurate.

3.5 Dynamically-Informed Particle
Swarm

DIPS is, in theory, a way to bridge the gap between
the quick convergence of FIPS with the ability to
explore the solution space thoroughly, seen in RIPS.
DIPS does this by at first keeping the k values
relatively small, around two, for the beginning of the
run, and gradually increasing them. The code for
DIPS is very similar to the code for FIPS or RIPS,
where the value of k changes as a function of the
iterative step of the swarm.

The quick convergence of the swarm later in the
run takes away some of the redundancy of RIPS in
the convergence process. It makes the diameter of

the swarm significantly smaller (asymptotically to 1),
allowing for the quick dissemination of information
through the swarm. In this project the number of
neighbors, k, is defined by the equation:

k = (n− 2)× t

MAXITER
+ 2 (8)

This equation increases the amount of neighbors
from 2, the starting amount, into a full FIPS. It is
important not to allow the code to take more then the
n number of particles to make sure that particles are
not allowed to influence a single particle more than
once per iteration.

4 Procedures and Methodol-
ogy

The first step for this project was to correctly recreate
the basic PSO (SIPS). In order to appropriately
do the testing for the paper, the social interaction
was made into a method. By making the social
interaction a method it was then possible to reuse
the rest of the code in order to ensure that only the
social interaction was changed. After the canonical
method was produced and tested to some extent,
various other social interactions were looked into and
included in the program. More specifically, those
interactions are NIPS, SIPS, FIPS, RIPS, and DIPS.
After the social interaction methods were introduced
new benchmark functions were also introduced in
much the same way the social interactions were. The
two social interactions used in this experiment were
the Sphere function and the Rastrigin function.

4.1 Testing

For this project, it would not be very possible to
use a mathematical formulas to judge the overall
performance of the swarm, due to the fact that
a great part of the algorithm (including starting
position and velocity) are derived randomly. There-
fore, the program will be tested by running each
social interaction multiple times for each benchmark
function tested, and from those runs determining
the average running time and number of time steps

4



Kenneth Lee 5 of 7

Figure 1: As the run begins each particle has a relatively small number of neighbors (left). As the run
continues, the number of neighbors increases (right).

needed for the swarm to converge on the correct
answer, if the swarm indeeds converges. A mark of
the success rate of the swarm was also calculated.

4.2 Software

For this project C was used for coding purposes. In
addition, the OpenGL library was used in order to
graphically depict 2 dimensions of the benchmark
function tested.

4.3 Running Notes

For this paper the MAXITER was 200,000 and the
inertial values for SIPS went from .8 at the start of
the run to .4 at the end, as suggested by [5]. For the
Rastrigin function the value of 10 was used as the A
value. Both functions were run in 30 dimensions. The
swarm size was 30 for all swarms for all functions.

5 Results

The results of the benchmark functions, Sphere and
Rastrigin, show that FIPS has an advantage for
iterative speed in finding the optimum solution. This
does not, however, mean that FIPS was the fastest
swarm in terms of real time, because real time was not
tested in this experiment. DIPS was able to converge
quicker than SIPS because of its addition of influence
as time progressed as opposed to SIPS’s static social
influence. RIPS took the longest amount of time to
converge, except for NIPS, which had a 0% success
rate.

NIPS SIPS FIPS RIPS DIPS
Sphere 0% 100% 100% 100% 100%
Rastrigin 0% 100% 100% 1% 48%

Table 1: Percent Success of Swarms

NIPS SIPS FIPS RIPS DIPS
Sphere ∞ 10,460 73 27,438 4,309
Rastrigin ∞ 9,088 100 184,894 5101

Table 2: Iterative Cost of Swarms

6 Conclusion

The rapid speed of FIPS seems to be unmatched at
least in this project. However, it is still important
to note the tendency of FIPS to fall into a local
minimum, instead of the global minimum. While this
is a problem to some extent for all social influence,
and even cognitive influences, the problem is bigger
for FIPS because of its large k value.

The failure of RIPS in this project is somewhat
of an enigma currently. In theory it should have
had a better success rate then FIPS due to its large
exploration capabilities in comparison to FIPS’s large
exploitation abilities. Perhaps coding error is to
blame or some other fault of the user. In all of the
functions and swarms tested, more tuning is required
in order to ensure proper runs from each of the
swarms. This tuning was not done, in an effort to
better test the swarms on a purely social level and
compare the method of social interaction as opposed
to optimizing the social theory to a specific problem.

Further testing needs to be done in order to better
test the swarms, as it is likely that the swarms will act

5



Kenneth Lee 6 of 7

differently for different test functions. If the No Free
Lunch Theorem holds, then it would seem probable
that for a few test functions some interactions will do
better than others.

References

[1] Maurice Clerc and James Kennedy. The particle
swarm: Explosion stability, and convergence in a
multi-dimensional complex space. IEEE Trans.
Evolutionary Computation, 6:58–73, 2002.

[2] J. Kennedy and R. Mendes. Population structure
and particle swarm performance. In CEC ’02:
Proceedings of the Evolutionary Computation on
2002. CEC ’02. Proceedings of the 2002 Congress,
pages 1671–1676, Washington, DC, USA, 2002.
IEEE Computer Society.

[3] Rui Mendes. Population Topologies and Their
In uence in Particle Swarm Performance. PhD
thesis, University of Minho, April 2004.

[4] Rui Mendes, James Kennedy, and José Neves.
The fully informed particle swarm: Simpler,
maybe better. IEEE Trans. Evolutionary Com-
putation, 8(3):204–210, 2004.

[5] Srinivas Pasupuleti and Roberto Battiti. The
gregarious particle swarm optimizer (g-pso). In
GECCO ’06: Proceedings of the 8th annual con-
ference on Genetic and evolutionary computation,
pages 67–74, New York, NY, USA, 2006. ACM.

[6] Frans van den Bergh. An Analysis of Particle
Swarm Optimizers. PhD thesis, University of
Pretoria, November 2001.

[7] Zhi-Lian Yang Xiao-Feng Xie, Wen Jun Zhang. A
dissipative particle swarm optimization. Hawaii,
USA, 2002. Institute of Microelectronics, Ts-
inghua University, Beijing.

6



Kenneth Lee 7 of 7

Figure 2: These are the results of four runs of the optimizer on the Sphere Function.

Figure 3: These are the results of three runs of the optimizer on the Sphere Function. RIPS was left out of
the graph due to its great iterative cost and its skewing of the other data to unrecognizable form.

Formula Region

Sphere

nX
i=1

xi
2 [-200,200]

Rastrigin nA +

nX
i=1

xi
2 −Acos(2πxi) [-10,10]

Table 3: Benchmark functions used in this paper

7


