

Figure 1: The program in action

Figure 2: Program output

Figure 3: Data collected regarding pixel shift

Analysis of Runner Biomechanics
Through Image Processing
Asa Kusuma | TJHSST Computer Systems 2007-2008 | June 8, 2008

Introduction
The biomechanical features of a runner in an image can be
analyzed by using certain image processing techniques, the
primary method being edge detection. By constructing an
accurate, two-dimensional model of a runner’s lower body from a
rear angle, it is possible to extrapolate the underlying qualities of
that runner’s biomechanics. This is done by creating an outline of
a runner's lower leg and feet. An edge detection algorithm is
applied on an image to create this outline. By comparing the
results of the edge detection algorithm input with images of the
runner before and after impact, biomechanical features can be
determined. In this type of situation, algorithm speed is not a very
relevant issue; accuracy is far more important, the reason being
that you only need to analyze a few images to create a two
dimensional model of the lower body, as well as the fact that the
time it takes to analyze a runner does not directly affect his
performance as a runner.

Background
The goal of this project is to analyze images of a runner and
extract biomechanical information about the runner from the
images. Among runners, a major cause of injury is overpronation.
Pronation is the natural inward rolling of the ankle to absorb
impact. All runners should pronate to a degree, but many runners
pronate too much, causing misalignment, knee problems, and
problems with the muscles and ligaments around the ankle. Even
worse, overpronation puts abnormal stress on the inside shin bone,
the Tibia. This can lead to shin splits and even stress fractures.
Conversely, many runners don't pronate enough. This situation is
called supination--such runners are called supinators. Supination
can cause problems similar to those stemming from
overpronation, but instead, the problems are usually with the
outside of the leg. For instance, supination causes stress on the
outside shinbone, the Fibula. Like in overpronators, stress
fractures can result from supination.

Like most biomechanical features in the human body, pronation is
a visible phenomenon, but hard to recognize to the un-trained eye.
Pronation happens very quickly, and the movement is miniscule.
This type of movement is hard for humans to see, but much easier
for a computer, armed with a 20 frame-per-second camera. Using
only images from a camera, the project will determine the degree
of pronation of a runner. Such an ability could be instrumental in
determining the proper shoe type and diagnosing injuries. The
project will strictly be involved in analyzing images from a
controlled environment and determining biomechanical features
from analysis of images. This means that the project will not be
concerned with selecting images from a video feed or trying to
analyze images taken in random and widely varying situations.
The images used in the project will be taken from the back of a
runner running on a treadmill, not from a runner running in
stormy weather in an urban environment, taken at an awkward
camera angle. There is very little purpose in trying to determine
the biomechanics of random people walking in the street, so
focusing on controlled environments makes the project much
more feasible at almost no cost to applicability in the real word.

Development
For the actual program, a programming language had to be
decided on. Originally, C++ was going to be used, but after
further though, Python was chosen. Because the nature of the
project concerned developing, testing, and trial-by-error coding of
algorithms, Python, a very easy to code and simple language, was
chosen. The downside is that Python is slightly slower than C++.
The program was written as a python script that can be run on any
computer that has python installed.

The first step in the process is to acquire the right images, namely,
images of a runner's leg in motion, before and after foot impact
with the ground. In order to increase the accuracy of the
algorithm, it is important to develop a proper and uniform setup
for capturing images. There are two variables that need to be
constant when devising the system: image resolution, distance
between the runner and the camera. Runner speed needs to be
faster than jogging speed and slower than sprinting speed. In other

words, the runner must be lifting up his knees, but he shouldn't be
up on the balls of his feet.

With these parameters in mind, a concrete system can be devised.
To capture the images, the camera is placed behind the treadmill,
with the lens placed just above the treadmill running surface. See
Fig 4. for a picture of the physical setup. Once the runner is
moving on the treadmill, the camera begins capturing video. The
video is loaded onto a computer and the frames are extracted and
converted to raw images. An image taken before impact and an
image taken after impact are manually selected and input into the

Within the program, the images are prepared for edge detection
using Gaussian blurring, noise removing techniques, and outlier
removal algorithms. In order to reduce noise I developed an
algorithm for targeting continuous lines. I found that the top of
images tended to be more accurate because there are no irregular
lines around the middle and upper portion of the lower leg. Thus,
the algorithm finds the edge near the top of the image and works
down the edge, only including edge pixels that are near the pixels
above it. If a gap in the line forms, as vertical size of the gap
increases, the algorithm allows for pixels to have a larger
difference in x-coordinates from the nearest pixel above.

After preparation, an edge detection program creates an outline of
the inner leg. Once the two edges from the two images are
derived, the edges need to be aligned properly so that they can be
properly compared. Often, one edge is larger than the other edge.
This usually happens when one image is blurrier or has slightly
different lighting, so the computer can't accurately find as many
edge pixels for the edge. Because of this discrepancy, it wouldn't
be accurate to compare both images, so the sizes and positions of
the edges must be equalized. This is done by reducing the size of
the larger edge, to match the size of the smaller edge. Then an
algorithm is applied to both edges, in order to find the average x
values of the outlines. These two values are compared, producing
a pixel gap, or the difference in pixels between the two edges. The
larger the pixel gap, the higher the degree of pronation. However,
the output of this method, the pixel difference between the two
averages, is relative to the camera resolution. The same level of
pronation recorded with a camera with a larger resolution will
look like more severe pronation. After testing the program on
several runners, each running at a different distance from the
camera, I found that as long as the camera was placed in the same
position, at the end of the treadmill, there was no significant effect
on the accuracy of the program.

In order to produce a practical program that can be used by others,
it is imperative to develop some kind of graphic user interface that
the average person can use. While I didn't have the time to
develop a completely stand-alone graphical user interface, I did
implement a graphical user interface within the python terminal
program. In other words, the user must open a terminal and run
the program using the python command, but once that step has
been completed, the rest of the user experience has a graphical
user interface.

Results
After testing the program on multiple runners with all types of
biomechanics, I found that if the program found a pixel shift of
zero to five pixels, then the runner was a supinator. If the program
found a pixel shift of six to ten pixels, then the runner was a
neutral runner. If the program found a pixel shift of more than ten
pixels, than the runner is an overpronator. My program has been
tested on twelve runners; see Fig. 3 for the data results. Only one
of the tested runners was incorrectly assessed by the program.

Conclusion
While the scope of the testing of the program is not quite large
enough to cement the total accuracy of the system, it is clear that
the project has successfully created a way to analyze runner
biomechanics. The data in Fig. 3 shows a definite trend with an
increase in pixel shift associated with an increase in pronation.
Unfortunately, the program must still be run on a Python-
equipped machine, but there is an implemented graphical user
interface.

Figure 4: Image collection setup

