
Genetic Algorithms to find Near
Optimal Solutions to the Traveling

Salesman Problem(TSP)

0

2000

4000

6000

8000

10000

12000

14000

The Traveling Salesman Problem (TSP) is the classic nondeterministic
polynomial-time hard(NP-hard) problem. The problem goes as such Given a
number of cities and the costs of traveling from any city to any other city,
what is the cheapest round-trip route that visits each city exactly once and
then returns to the starting city? Although the problem is stated so simply
and discreetly it is in fact a very difficult problem to solve. To simply use
brute force to check all possible solutions it would require a O(N!). This
quickly becomes very difficult to do even for relatively small n. Therefor it
becomes pertinent to find near optimal solutions through other methods using
more realistic times.

The methods which I use to find near optimal solutions to the TSP are
genetic algorithms(GA). GAs are a search technique in computing used for
optimization and search problems such as the TSP. GAs are inspired by
evolutionary biology and incorporate such concepts as inheritance, mutation,
selection, crossover, and reproduction.

Pseudo-code for generic GA
1)Choose initial population
2)Evaluate fitness for each individual in the population
3)Repeat

1)Select the best individuals to reproduce
2)Breed new generations using crossover and mutation
3)Evaluate fitness of the offspring
4)Replace worst ranked part of population with offspring

Fitness Level Verses Time

Sample TSP

Currently I am using a cycle representation of a solution.
This means that I represent each solution as the order in
which it attends the cities. This is not very efficient, but it was
fairly easy to code.
I am currently using single point mutation and double point
crossover. This is how my solutions get better. Eventually I
should work for a double point mutation. If I use a matrix
encoding the double point crossover will be replaced by a
more efficient matrix crossover.
To assess fitness I am currently using the difference between
an individual solution and the worst solution in the current
gene-pool. This ensures that the worst solution in any given
gene-pool does not reproduce. Eventually I want the fitness
be placed on an exponential curve in order for the better
solutions to reproduce more often.

Another method in which I will be employing in order to solve
the TSP will be through Ant Colony Optimization. In ant colony
optimization I use simulated ants which tour through the search
space and leave a pheromone trail. Based on how efficient the
trail is more or less of the pheromone is evaporated. Ants then
stoicastically chose the various trails in order to find a near
optimal solution.

An ant will move from node I to j with probabiliity -

 pi,j = [τij]α[ηij]β
 Σ[τij]α[ηij]β

Psuedo-Code for ACO
 procedure ACO_MetaHeuristic
 while(not_termination)
 generateSolutions()
 pheromoneUpdate()
 daemonActions()
 end while
 end procedure

