
Genetic Algorithms to find Near Optimal Solutions
to the Traveling Salesman Problem(TSP)

0

2000

4000

6000

8000

10000

12000

14000

The Traveling Salesman Problem (TSP) is the classic nondeterministic
polynomial-time hard(NP-hard) problem. The problem goes as such Given a
number of cities and the costs of traveling from any city to any other city,
what is the cheapest round-trip route that visits each city exactly once and
then returns to the starting city? Although the problem is stated so simply
and discreetly it is in fact a very difficult problem to solve. To simply use
brute force to check all possible solutions it would require a O(N!). This
quickly becomes very difficult to do even for relatively small n. Therefor it
becomes pertinent to find near optimal solutions through other methods using
more realistic times.

Each Genetic Algorithm consists of essentially four major parts.
Initialization
Selection
Reproduction
Mutation

I use a cycle representation of a TSP solution. This means that each solution
is an array of integers which refer to the a city in a path which is actually just
two integers, an x and y coordinate. This makes all the rest of the algorithms
fairly easy to code. When I initialize my gene pool I fill the arrays with
random paths. This means that I start from total random solutions.

Fitness Level Verses Time

My college basketball prediction uses a genetic algorithm to give different weightings to 27 different statistics including shooting percentage,
offensive rebound percentage, and tempo. This Genetic Algorithm currently takes seven hours to converge. For the future I am hoping on using
a double point mutation and a greedy crossover to make it converge more quickly. I also hope that adding linear combinations of statistics will
make my GA converge on a solution that has higher than 70% accuracy.

A Real World Problem

The main part of selection is the fitness algorithm. The fitness
algorithm assesses a fitness level for each solution based on how
good the solution is. A better solution is supposed to have a higher
fitness level. Because the main thing I am measuring is the distance
of a path, higher distances are worse. I am trying to minimize
distance. To rectify this I made my fitness algorithm the distance of
the worst path in the gene pool minus the distance of the current path
in the gene pool. This gave fairly good results.

After you have the fitness level there are still many ways to select
which solutions get to reproduce. I coded three different ways, elitism
selection roulette selection, and combination selection. In elitism
selection I randomly select 10 different solutions and the solution with
the highest fitness level among those 10 gets to reproduce. For
roulette selection I select the solutions stochastically. Each point of
fitness essentially gives you one chance to be selected in a
theoretical lottery. This way the better solutions get picked
proportionally to how they are better more often.

I implemented two types of crossover for my cycle representation.
The two types of crossovers represented were single point and double
point crossover. These types of crossovers help to conserve edges in
the Traveling Salesman problem an were shown to be almost equally
effective.

For mutation I did single double point mutation. For this I randomly
switched the positions of two cities next to each other in the TSP.

Another problem of genetic algorithms is you are never sure when to stop
them. Theoretically the best solution should continue to improve until you
reach the global optimum or get stuck in a local optimum. There are two
main trains of thought for ending a genetic algorithm. One is to stop when
the best solution has not improved for a certain number of generations,
and the other is to stop when the average global fitness level has not
improved for a certain number of generations. I decided to stop my
algorithm after nine generations in which the average fitness level does not
improve.

Karl Leswing Computer Systems Laboratory 2007-2008

	Slide 1

