
Prisoner’s Dilemma with Optional Cooperation and N
Participants

Prisoner's Dilemma with Optional Cooperation and N Participants
Matt Lee

TJHSST Computer Systems

Abstract
This project is designed to simulate

the classical Prisoner’s Dilemma with a
large number of participants and set
options to cooperate with others or not.
 The purpose of this project is to allow
the Prisoner’s Dilemma to have
variable parameters so that a variety of
situations and settings could be tested.
 The result that is expected is a variety
of simulations that will show how a
specific situation can turn out when
given options to cooperate, backstab,
or ‘join forces’.

Background
The Prisoner’s Dilemma has been

implemented a large number of times. There
have even been competitions held to see who
could make an algorithm that would maximize the
payout for their specific participant. As stated by
Robert Axelrod, the author of ‘The Complexity of
Cooperation’ the best strategy for maximizing
payoff is to use ‘tit for tat’. Tit for tat is a strategy
where the participant mimics the last move
played by the opponent, which in the long run,
enables the user to maximize his payout at the
end of the ‘game’ of Prisoner’s Dilemma.
However, interestingly enough, when both
participants initiate tit for tat, it doesn’t become
the optimal strategy. From here, a large number
of variations have been made to the Prisoner's
Dilemma, including implementing “N” participants
instead of just two.

Progress
As of now, my version of Prisoner’s

Dilemma runs similarly to the classical
version. There are two participants and
both are trying to maximize their outputs
in a total of six rounds of play. The code
had originally been utilized to create two
‘prisoners’ and use them for play. The
two would simply make a random choice
which would in turn, determine their
payout. However, this random decision
strategy is merely for testing purposes,
other strategies including tit for tat will be
utilized later.

 if(truthcount==falsecount)
 {
 CooperateBetray(prison
ers);
 }
 else
if(truthcount>falsecount)
 {
 CooperateCooperate(pri
soners);
 }

 else
if(falsecount>truthcount)
 {
 BetrayBetray(prisoners
);
 }

This portion of code should be able to
be implemented for future development
with “N” prisoners.

Results
The results I expect are a variety of scenarios to be implemented by the Prisoner's

Dilemma that will include “N” participants of the user's choice and option to enable
morality.

