
Prisoner’s Dilemma with Optional Cooperation and N
Participants

Prisoner's Dilemma with Optional Cooperation and N Participants
Matt Lee

TJHSST Computer Systems

Abstract
This project is designed to simulate

the classical Prisoner’s Dilemma with a
large number of participants and set
options to cooperate with others or not.
 The purpose of this project is to allow
the Prisoner’s Dilemma to have
variable parameters so that a variety of
situations and settings could be tested.
 The result that is expected is a variety
of simulations that will show how a
specific situation can turn out when
given options to cooperate, backstab,
or ‘join forces’.

Background
The Prisoner’s Dilemma has been

implemented a large number of times. There
have even been competitions held to see who
could make an algorithm that would maximize
the payout for their specific participant. As
stated by Robert Axelrod, the author of ‘The
Complexity of Cooperation’ the best strategy for
maximizing payoff is to use ‘tit for tat’. Tit for tat
is a strategy where the participant mimics the
last move played by the opponent, which in the
long run, enables the user to maximize his
payout at the end of the ‘game’ of Prisoner’s
Dilemma. However, interestingly enough, when
both participants initiate tit for tat, it doesn’t
become the optimal strategy. From here, a large
number of variations have been made to the
Prisoner's Dilemma, including implementing “N”
participants instead of just two.

Progress
The options to choose strategies and

make a number of opponents have been
added to the program. The Prisoner
class has undergone some changes
including changing string identification to
integer identification and the addition of
a new method. The program itself has
several variations of Tit for Tat added
into it as well at this point.

– if(turn!=0)
 {

 while(run<size)
 {
 if(run!=IDtag)
 {
 Boolean
desu=(Boolean)list.get(run);
 boolean desu2=desu.booleanValue();
 if(desu2==false)
 falsers++;
 else if(desu2==true)
 truers++;
 }

 run++;
 }
 if(falsers>=truers)
 player.setDecision(false);
 else if(falsers<truers)
 player.setDecision(true);
 }
 else
 player.setDecision(true);

 /*while(counter<size)
 {
 prisoner player2=(prisoner)
list.get(counter);
 if(player2==player)
 {
 break;
 }
 else
 {
 boolean oppDeci=player2.getDecision();
 player.setDecision(oppDeci);
 }

Results
The results I expect are a variety of scenarios to be implemented by the Prisoner's

Dilemma that will include “N” participants of the user's choice and option to enable
morality.

