
Pathfinding Algorithms for Mutating
Graphs

Haitao Mao

Computer Systems Lab 2007-2008

1

1 Abstract

Consider a map of an unknown place represented as a graph, where
vertices represent landmarks and edges represent connections between land-
marks. You have current information on whether each edge is traversible,
as well past data about the availability of each connection. You have a
preset destination that you want to reach as fast as possible. Pathfinding
algorithms for static graphs involve computing the whole path from start to
destination, but if the graph is rapidly changing, say due to some extreme en-
vironmental condition, then calculating the whole path in the beginning will
not be feasible. The purpose of this project is to design and compare different
pathfinding algorithms for a graph whose structure mutates to a significant
extent. Algorithms may involve probabilistic theory, dynamic programming,
heuristics, genetic programming, and variations of standard shortest-path
algorithms such as Dijkstra’s algorithm.

2 Introduction

The problem statement is as follows: given an initial graph structure
of a mutating graph, a start vertex, an end vertex, and an edge history for
every pair of vertices, develop an algorithm to travel from the start vertex to
the end vertex. The mutating graph will be implemented in timesteps. After
each move, each edge will either stay the same or be toggled by some random
function of the current state of the graph. The plan is to create a sturdy
algorithm for the general case of the problem, as well as variations for specific
cases where the main algorithm would not be as effective. Algorithms will be
compared and analyzed to determine the circumstances for which each one
is best. This project will involve both theory and actual programming.

3 Background Literature

There are little to no studies available concerning mutating graphs, so
research has been focused on graph theory in general as well as the more
specific topic of dynamic graphs, which may change in structure. General
shortest path and flow algorithms have been reviewed. Dynamic graph algo-
rithms and query/update algorithms have been reviewed lightly. The results
from this project are expected to be completely new and original.

4 Theory and Algorithms

Define randomized distance as the distance to destination node taking
the possibility of graph mutation into account. For example, a vertex with
two unit length paths leading to the destination will be closer in this sense

2

than a vertex with only one. We use steady-state convergence and meth-
ods from numerical analysis to set up a system of equations we want the
randomized distances to satisfy, and solve the system. We use dynamic pro-
gramming to approximate distance to heuristically closer points first, then
base calculations for farther vertices on these approximations. We use the
previous states of the graph: we can use this data to develop a hashmap
to approximate future mutations. The hashmap stores each mutating as a
mapping from the original state to the new state, and then calculates the
probability of toggling states. Then, that probability is used to calculate
the probability that an edge will exist in any number of timesteps. We use
genetic programming to find optimal values for algorithm-specific variables,
such as probability estimate multipliers and heuristic functions. We focus on
sparse graphs, graphs where the number of edges is significantly less than the
square of the number of vertices. The edge weights are limited to positive
doubles so mutation will be somewhat controlled; edge weights that are too
large will never be traversed anyway.

Currently, the algorithm proceeds chronologically, then for each vertex,
it calculates the optimal vertex in the previous time step that could have led
to this vertex. It uses the history hash map to predict the graph structure
at that timestep, and uses an approximation error to weight lower timesteps.
Then, it backtracks to find the best vertex after the first timestep to visit.
This is the main body of the working java implementation of this algorithm:

for(int v=0; v<vertices; v++) prevvals[v] = inf;

prevvals[curvertex] = 0;

for(int t=0; t<tlimit; t++)

{

for(int v=0; v<vertices; v++)

{

curvals[v] = inf;

for(int e=0; e<adjlist[v].size(); e++)

{

Edge E = (Edge)adjlist[v].get(e);

if(prevvals[E.getVertex(v)]>=inf) continue;

double x = globhist.predictMutations(E.getWeight(),t) + prevvals[E.getVertex(v)];

if(x<curvals[v])

{

curvals[v] = x;

bestprev[v][t] = E;

}

}

}

for(int v=0; v<vertices; v++)

prevvals[v] = curvals[v];

if(curvals[vend]<inf)

3

{

if(curvals[vend]<bestend||bestend<0)

{

bestendtime = t;

bestend = curvals[vend];

}

}

else if(t==tlimit-1) System.out.println("Time limit is insufficient for the width of this graph");

}

int btrack = vend;

for(int t=bestendtime; t>0; t--)

{

System.out.println(t + " " + btrack);

btrack = bestprev[btrack][t].getVertex(btrack);

}

return bestprev[btrack][0];

5 Testing

The testing interface as well as the algorithms themselves will be writ-
ten in Java. Since graphs are difficult to develop graphics for, output will
be limited to textual lists and charts. Testing will be done by generating
graph structures and initial weights and devising a system for the random
edge weight mutation. Then, repeated simulations will be run and the algo-
rithms will be scored based on their performance for various types of starting
parameters.

First, the algorithms will be tested for functionality and stability by
examining its pathfinding in the interface and seeing if it behaves as ex-
pected. Then, algorithms will be tested for efficiency through random and
user-specified initial states. Algorithms will be compared based on how fast
they can find their destination, runtime complexity, and memory usage. If
the algorithms take parameters, then genetic algorithms can be used to find
optimal values for the parameters.

Second quarter was devoted solely to building algorithms and developing
theory for solving the problem. Testing and variating will begin third quarter.
The results should be ready by the end of third quarter and fourth quarter
will be focused on analyzing and finishing off the project and writing it up.

6 Expected Results

Results will consist of the efficiency, complexity, and stability of the al-
gorithms tested. Results will be presented in charts, data tables, qualitative
statements, and possibly graphics. Applications of the results are undeter-
mined as this point, since this is not a commonly trod subfield of graph

4

theory. Robots may be able to apply the algorithms in natural or man-
modeled environments. The graph may be able to simulate a transportation
network in order to find paths for pioneers. The randomly mutating edge
weights may represent an unknown cause of change in an environment, even
if there is a systematic pattern to the change. The factor may simply be too
complex to model exactly and would be better approximated by a random
variable. The project may be useful for applications further into the future,
or may spark further development in the area which will lead to results that
may be put into practice.

7 Literature Cited

References

[1] D. Frigoni, M. Ioffreda, U. Nanni, G. Pasqualbne, “Experimental Anal-
ysis of Dynamic Algorithms for the Single Source Shortest Paths Prob-
lem”, 2000. http://www.acm.org/jea/TURING/Vol3Nbr5.pdf.

5

