
Pathfinding Algorithms for Mutating
Graphs

Haitao Mao

Computer Systems Lab 2007-2008

1

1 Abstract

Consider a map of an unknown place represented as a graph, where
vertices represent landmarks and edges represent connections between land-
marks. You have current information on whether each edge is traversible,
as well past data about the availability of each connection. You have a
preset destination that you want to reach as fast as possible. Pathfinding
algorithms for static graphs involve computing the whole path from start to
destination, but if the graph is rapidly changing, say due to some extreme en-
vironmental condition, then calculating the whole path in the beginning will
not be feasible. The purpose of this project is to design and compare different
pathfinding algorithms for a graph whose structure mutates to a significant
extent. Algorithms may involve probabilistic theory, dynamic programming,
heuristics, genetic programming, and variations of standard shortest-path
algorithms such as Dijkstra’s algorithm.

2 Introduction

The problem statement is as follows: given an initial graph structure
of a mutating graph, a start vertex, an end vertex, and an edge history for
every pair of vertices, develop an algorithm to travel from the start vertex to
the end vertex. The mutating graph will be implemented in timesteps. After
each move, each edge will either stay the same or be toggled by some random
function of the current state of the graph. The plan is to create a sturdy
algorithm for the general case of the problem, as well as variations for specific
cases where the main algorithm would not be as effective. Algorithms will be
compared and analyzed to determine the circumstances for which each one
is best. This project will involve both theory and actual programming.

3 Background Literature

There are little to no studies available concerning mutating graphs, so
research has been focused on graph theory in general as well as the more
specific topic of dynamic graphs, which may change in structure. General
shortest path and flow algorithms have been reviewed. Dynamic graph algo-
rithms and query/update algorithms have been reviewed lightly. The results
from this project are expected to be completely new and original.

4 Theory and Algorithms

Define randomized distance as the distance to destination node taking
the possibility of graph mutation into account. For example, a vertex with
two unit length paths leading to the destination will be closer in this sense

2

than a vertex with only one. We use steady-state convergence and meth-
ods from numerical analysis to set up a system of equations we want the
randomized distances to satisfy, and solve the system. We use dynamic pro-
gramming to approximate distance to heuristically closer points first, then
base calculations for farther vertices on these approximations. We use the
previous states of the graph: we can use this data to develop a hashmap
to approximate future mutations. The hashmap stores each mutating as a
mapping from the original state to the new state, and then calculates the
probability of toggling states. Then, that probability is used to calculate
the probability that an edge will exist in any number of timesteps. We use
genetic programming to find optimal values for algorithm-specific variables,
such as probability estimate multipliers and heuristic functions. We focus on
sparse graphs, graphs where the number of edges is significantly less than the
square of the number of vertices. The edge weights are limited to positive
doubles so mutation will be somewhat controlled; edge weights that are too
large will never be traversed anyway.

Currently, the first algorithm proceeds chronologically, then for each
vertex, it calculates the optimal vertex in the previous time step that could
have led to this vertex. It uses the history hash map to predict the graph
structure at that timestep, and uses an approximation error to weight lower
timesteps. Then, it backtracks to find the best vertex after the first timestep
to visit. This is the main body of the working java implementation of this
algorithm:

for(int v=0; v<vertices; v++) prevvals[v] = inf;

prevvals[curvertex] = 0;

for(int t=0; t<tlimit; t++)

{

for(int v=0; v<vertices; v++)

{

curvals[v] = inf;

for(int e=0; e<adjlist[v].size(); e++)

{

Edge E = (Edge)adjlist[v].get(e);

if(prevvals[E.getVertex(v)]>=inf) continue;

double x = globhist.predictMutations(E.getWeight(),t)

+ prevvals[E.getVertex(v)];

if(x<curvals[v])

{

curvals[v] = x;

bestprev[v][t] = E;

}

}

}

for(int v=0; v<vertices; v++)

3

prevvals[v] = curvals[v];

if(curvals[vend]<inf)

{

if(curvals[vend]<bestend||bestend<0)

{

bestendtime = t;

bestend = curvals[vend];

}

}

else if(t==tlimit-1) System.out.println("Time limit is

insufficient for the width of this graph");

}

int btrack = vend;

for(int t=bestendtime; t>0; t--)

{

System.out.println(t + " " + btrack);

btrack = bestprev[btrack][t].getVertex(btrack);

}

return bestprev[btrack][0];

By this point, there are several major algorithms working. The preliminary
algorithms include taking a greedy at each step, and running a Dijkstra at
each step. These algorithms do not take mutation into account, so they run
pretty poorly and are used as a measure of how effective other algorithms
are.

The first major algorithm consists of many independent parts. In the
beginning, the algorithm makes a history of all the mutations and determines
the probability of each mutation occurring. The history is its own data
structure. Then, at each timestep, a dynamic programming approach takes
the shortest path to that step using previous stored results and the predicted
distance of the edge, which is just the probability that the edge will exist at
that timestep. We are computing distance from our destination here, so that
at the end, we can look at all the vertices connected to our starting vertex
and see which one has the least distance. Note that here, we must also take
into account the starting vertex itself, because the pathfinder can decide to
not move anywhere.

The main problem with the first algorithm is that instead of doing any
probabilistic calculation, you just approximate everything as the mean. This
is suboptimal because it is not just an entirely accurate computation, but it
comes pretty close, so it’s actually quite difficult to improve upon. In the
average case, this algorithm will do fairly well.

The next algorithm tries to remedy the flaw of the first algorithm by
introducing a concept of randomized distance. This is basically a distance
function of an edge that takes mutation into account. It is not clear how to
best define this function, but we must take into account various properties.

4

For one, it should return something at least one. Secondly, disregarding
other paths, the more likely it is for a length one path to exist between two
vertices, the lower the randomized distance should be. Also, obviously the
randomized distance should not be dependent on the timestep. It should be
dependent on the structure of the graph and the mutation rates of the edges.
Finally, the randomized distance should satisfy the triangle inequality. Our
randomized distance should be a metric, but this classification won’t really
help us much.

As a heuristic for randomized distance, we can either try to make the
complexity in terms of number of vertices or number of edges. The second
algorithm consdiers each edge, so it is pretty accurate. The third algorithm
only considers the vertices in its heuristic, so it it significantly faster than the
second algorithm, but it should also run worse than the second algorithm.

5 Testing

The testing interface as well as the algorithms themselves will be writ-
ten in Java. Since graphs are difficult to develop graphics for, output will
be limited to textual lists and charts. Testing will be done by generating
graph structures and initial weights and devising a system for the random
edge weight mutation. Then, repeated simulations will be run and the algo-
rithms will be scored based on their performance for various types of starting
parameters.

First, the algorithms will be tested for functionality and stability by
examining its pathfinding in the interface and seeing if it behaves as ex-
pected. Then, algorithms will be tested for efficiency through random and
user-specified initial states. Algorithms will be compared based on how fast
they can find their destination, runtime complexity, and memory usage. If
the algorithms take parameters, then genetic algorithms can be used to find
optimal values for the parameters.

Second quarter was devoted solely to building algorithms and developing
theory for solving the problem. Third quarter, I started actually testing my
programs. For preliminary testing, I compared the accuracy of the programs
against each other. I ran the Dijkstra which does not implement mutation
stuff, and it did not run too well as expected. Then I ran the first algorithm,
then the second, then the third. Here is some average data:

Dijkstra(no mutation):

small case: size 13

avg 5.75 turns to reach end

large case: size 500

avg 46.34 turns to reach end

5

first algorithm(most basic):

small case: size 13

avg 4.32 turns to reach end

large case: size 500

avg 28.46 turns to reach end

second algorithm:

small case: size 13

avg 4.25 turns to reach end

large case: size 500

avg 24.09 turns to reach end

third algorithm:

small case: size 13

avg 4.07 turns to reach end

large case: size 500

avg 25.95 turns to reach end

6 Expected Results

Results will consist of the efficiency, complexity, and stability of the al-
gorithms tested. Results will be presented in charts, data tables, qualitative
statements, and possibly graphics. Applications of the results are undeter-
mined as this point, since this is not a commonly trod subfield of graph
theory. Robots may be able to apply the algorithms in natural or man-
modeled environments. The graph may be able to simulate a transportation
network in order to find paths for pioneers. The randomly mutating edge
weights may represent an unknown cause of change in an environment, even
if there is a systematic pattern to the change. The factor may simply be too
complex to model exactly and would be better approximated by a random
variable. The project may be useful for applications further into the future,
or may spark further development in the area which will lead to results that
may be put into practice.

7 Literature Cited

References

[1] D. Frigoni, M. Ioffreda, U. Nanni, G. Pasqualbne, “Experimental Anal-
ysis of Dynamic Algorithms for the Single Source Shortest Paths Prob-
lem”, 2000. http://www.acm.org/jea/TURING/Vol3Nbr5.pdf.

6

