
Pathfinding Algorithms for Mutating
Graphs

Haitao Mao

Computer Systems Lab 2007-2008

1

1 Abstract

Say you are an avid traveler in today’s rapidly changing world. Consider
a map of an unknown place represented as a graph, where vertices represent
landmarks and edges represent connections between landmarks. You have
current information on whether each edge is traversible, as well past data
about the availability of each connection. You have a preset destination that
you want to reach as quickly as possible. Pathfinding algorithms for static
graphs involve computing the whole path from start to destination, but if
the graph is rapidly changing, say due to some extreme environmental con-
dition, then calculating the whole path in the beginning will not be feasible.
The purpose of this project is to design and compare different pathfinding
algorithms for a graph whose structure mutates to a significant extent. Al-
gorithms implemented involve probabilistic theory, dynamic programming,
heuristics, genetic programming, and variations of standard shortest-path
algorithms.

2 Introduction

Consider an unweighted graph whose edges change over time. Think of
each edge as a binary switch with states off and on. Some edges will always
be off. Then consider a dynamic shortest-path problem on this graph from
a given start vertex to a given end vertex. We want an algorithm which will
give the optimal first edge for the path, aka a pathfinder. The algorithm will
perform in the following scenario: after each move the algorithm makes(with
waiting on the same vertex being an option), one unit of time will pass and the
edges will mutate accordingly. It will be scored based on the average number
of moves it takes the pathfinder to go from start to end, while not using too
much memory or computation time in the process. We must assume that
the edges mutate based on some pattern that incorporates only a random
variable. We may also assume that the graph is sparse; that is, the number is
edges is on the order of the number of vertices. The plan is to create a sturdy
algorithm for the general case of the problem, as well as variations for specific
cases where the main algorithm would not be as effective. Algorithms will be
compared and analyzed to determine the circumstances for which each one
is best. This project will involve both theory and actual programming.

2.1 Background Literature

There are little to no studies available concerning mutating graphs, so
research has been focused on graph theory in general as well as the more
specific topic of dynamic graphs, which may change in structure. General
shortest path and flow algorithms have been reviewed. Dynamic graph algo-
rithms and query/update algorithms have been reviewed lightly. The results

2

from this project are expected to be completely new and original.

2.2 Problem Statement

An input file will contain the following information: number of vertices,
number of edges, which two vertices each edge connects, the start vertex, the
destination vertex, and a mutation history. The mutation history is a list of
past mutations for each edge that stores the state of each edge (on or off) at
each timestep from a certain starting point up to current time.

3 Theory and Algorithms

3.1 Starting Out

First we look at some simplistic solutions to get a feel for this problem.
What is one solution that can be coded in just a few minutes? How about
a random walk? A random walk is a pathfinder that chooses the edge to
traverse next randomly and uniformly. This algorithm will eventually reach
the destination without doubt and takes almost no runtime, but it clearly
fails on the grand scale. Whenever we have a dense cluster of vertices that
is far away from our destination, our random walk will most likely get stuck
for long periods of time. How can we improve on this algorithm without
getting rid of its random nature? One helpful optimization is to keep track
of the number of times each vertex has been visited and weight less frequently
visited vertices higher. This will allow the random walk to get itself unstuck
very easily and explore the graph without backtracking as much. In fact,
this greatly boosts the efficiency of the algorithm. Consider a linear graph
where edges do not mutate very rapidly. The unoptimized version will take
exponential time to reach the destination, while the optimized algorithm
takes linear time.

Another simplistic idea would be to take a greedy approach. This is done
by using a breadth-first search(BFS) to calculate the distance of each vertex
from the destination using all available edges, then to move to the closest
vertex that is connected by an on edge. However, we run into the problem
of an edge that stays off almost all of the time, thus stalling the pathfinder
for a very long time. We can amend the floodfill to only consider edges that
are on in the calculation of the distance. It turns out that this algorithm is
rather effective for its simplicity; it is probably the algorithm that a human
mind would use to solve this problem. The main problem with a floodfill
approach is that it assumes that the path will remain viable in the future. In
other words, it incorrectly assumes that mutations are negligible. The gives
us the insight to add an additional layer to make a BFS viable. This will
lead to observations later in the paper.

3

3.2 Probabilistic Analysis

Let’s use a small graph as an example. Consider the graph with 6 vertices
A, B, C,D, E, F and 8 edges AB, BC, CD, DE,EF, FA, BD,CE. We want
to get from A to E. Initially, all edges are on. What seems like the intuitive
edge to take? Of course, we want to get from A to E via the shortest route,
so we compute the distance between each point and E. We see that C, D, F
are distance 1 away, and A, B are distance 2 away. Since B, F are the only
vertices connected to our starting vertex and F is closer to E than B, our
greedy intuition tells us to go to F . However, what if the mutation rate
is very high? Our planned path, AFE, might be disconnected before we
can finish, and we will be stuck at F . If EF shuts down, then the distance
between E and F will be at least 4. Now our move to F doesn’t look as
rosy anymore. If we move to B first, then we are guaranteed to take at least
3 moves, but we have a much higher chance that we will be able to reach
E in 3 or 4 moves. Because the subgraph containing vertices B, C, D,E is
much more densely connected. So do we go for the shorter, riskier route or
the route with multiple backup routes? It’s hard to decide, and our decision
could change based on what we already know from the mutation history, so
we’re going to need some tool to help us decide.

We introduce a concept of randomized distance(RD). This distance
encapsulates the mutations into a metric, as well as satisfying the condi-
tion that vertices which are more likely to be connected have a lower dis-
tance. As such, RD(A, A) = 0, RD(A, B) = RD(B, A), and RD(A, C) ≤
RD(A, B) + RD(B, C). We have another intuitive observation that adding
an edge cannot increase the randomized distance between two edges. This
leads us to a possible way to compute randomized distances: by adding in
on edge at a time and decreasing the distance continually. However, then
the order we consider the edges will matter, but it really shouldn’t for an
accurate computation. We approach this from another angle. What if we
had a bunch of conditions we want the distances to satisfy. We can set up
a series of linear equations representing relationships between multiple ver-
tices which are closely connected. For example, let us consider the complete
graph with three vertices, A, B, C. Let’s assume that each edge has a 50%
chance of being on at any given time. The distance between the start and
end vertex should be 2, because on average it takes 2 moves to reach the
destination. In actuality, an exact computation for just that edge would
yield a distance of

∑∞
i=1 i/2i = 2. In general, the actual RD would be lower

because there are alternative paths, but in this case, it is always beneficial
to stay in place because all the edges have the same chance of mutation, and
it is also independent of the previous state of the edge. We need a way to
conglomerate multiple paths into one distance value, but first, we must deal
with an important concept.

There needs to be a way to approximate the state of an edge in future
timesteps. All we are given in the input is a history of mutations, so we must

4

use this as well as possible. We create a history class which stores a count
of the number of times it mutates from on or off and the number of times it
stays on or off. The history structure captures all the relevant information for
each edge in four variables. It then can predict the state of an edge any turns
into a future, giving the probability that it’ll be on. This data structure also
updates dynamically with the pathfinder, which will help in case the history
data is insufficient for the algorithm to make good decisions.

We take a moment to digress about a generalization of our history data
structure. What if the mutation is just based just on a binary variable,
but also on other factors? Four variables would not be sufficient for more
complicated mutations. If, say, the graph was weighted, then we can expand
the history class to contain a hashmap for each edge, which maps a previous
state to its post-mutation state. Then, to compute the predicted mutation of
some state, we look at the closest elements in the keyset, and take a weighted
average of the mappings, where closer elements are weighted much higher.
This generalization will also allow us to deal with an edge being affected by
the states of other edges or big picture factors.

So we have an algorithm which makes direct use of the history class. It
proceeds chronologically, then for each vertex, it calculates the optimal vertex
in the previous time step that could have led to this vertex. It uses the history
data to predict the graph structure at that timestep. Then, it backtracks to
find the best vertex after the first timestep to visit. This is the main body of
the working java implementation of this BFS- based probabilistic algorithm:

for(int v=0; v<vertices; v++) prevvals[v] = inf;

prevvals[curvertex] = 0;

for(int t=0; t<tlimit; t++)

{

for(int v=0; v<vertices; v++)

{

curvals[v] = inf;

for(int e=0; e<adjlist[v].size(); e++)

{

Edge E = (Edge)adjlist[v].get(e);

if(prevvals[E.getVertex(v)]>=inf) continue;

double x = globhist.predictMutations(E.getWeight(),t)

+ prevvals[E.getVertex(v)];

if(x<curvals[v])

{

curvals[v] = x;

bestprev[v][t] = E;

}

}

}

for(int v=0; v<vertices; v++)

5

prevvals[v] = curvals[v];

if(curvals[vend]<inf)

{

if(curvals[vend]<bestend||bestend<0)

{

bestendtime = t;

bestend = curvals[vend];

}

}

else if(t==tlimit-1) System.out.println("Time limit is

insufficient for the width of this graph");

}

int btrack = vend;

for(int t=bestendtime; t>0; t--)

{

System.out.println(t + " " + btrack);

btrack = bestprev[btrack][t].getVertex(btrack);

}

return bestprev[btrack][0];

3.3 Heuristics

A way to deal with the inherent randomness of the problem is to approx-
imate every random variable as what the history class predicts it to be. For
the steady-state convergence process to work on the RD equations, we need
a way to weight the edges that come into play. One way is to consider the
degree of each vertex and the degrees of the vertices adjacent to one vertex.
Another heuristic is to consider the number of predicted mutations occuring
around one edge, with higher weights for edges farther away. This heuristic
would use the history structure effectively, but it requires a lot of tweaking
to get correct, and genetic programming can be used to stablize the weight
constants.

4 Conclusions

Throughout the paper we have developed a lot of approaches and ideas
for the pathfinding problem on mutating graphs, but a direct comparison is
hard to achieve due to the numerous factors that a perfect algorithm must
have. Needless to say, different algorithms perform better in different circum-
stances. Where the enhanced random walk may work better in situations
where we have insufficient information, the advanced heuristical algorithm
will surely do better in randomly generated graphs with a distinct pattern
of mutation. If you have read through the paper, you should be able to de-
cide for yourself which algorithm works best under your circumstances, and

6

maybe the discussion has fueled your intuition and whetted your appetite for
further research.

5 Literature Cited

References

[1] D. Frigoni, M. Ioffreda, U. Nanni, G. Pasqualbne, ”Experimental Anal-
ysis of Dynamic Algorithms for the Single Source Shortest Paths Prob-
lem”, 2000. http://www.acm.org/jea/TURING/Vol3Nbr5.pdf.

[2] C. Demetrescu, G. F. Italiano, ”Algorithmic Techniques for Maintaining
Shortest Routes in Dynamic Networks”, 2006.

[3] U. Meyer, ”Average-case Complexity of Single-Source Shortest-Paths
Algorithms: Lower and Upper Bounds”, 2001.

7

