
Pathfinding Algorithms for Mutating Graphs

Haitao Mao
Computer Systems Lab 2007-2008

Abstract

Algorithms

Background

Results and Conclusions

Consider a map of an unknown place represented as a
graph, where vertices represent landmarks and edges
represent connections between landmarks. You have current
information on the time it will take to travel between landmarks,
as well as an archive about how the travel times changed
through the past. You have a preset destination that you want to
reach as fast as possible. Pathfinding algorithms for static
graphs involve computing the whole path from start to
destination, but if the weights are rapidly changing due to some
extreme condition of the place, then calculating the whole path
in the beginning will not be feasible. The purpose of this project
is to design and compare different pathfinding algorithms for a
graph whose edge weights mutate randomly to a significant
extent. Algorithms may involve probabilistic analysis, dynamic
programming, heuristics, genetic programming, and variations
of standard shortest-path algorithms such as Dijkstra's
algorithm.

For this problem, the structure of the graph will be static;
that is, no vertices or edges will be added or removed. Only
the edge weights will be dynamic, and they must change to a
significant extent for the algorithm to be effective. If the
mutations are negligible, then a standard shortest path
algorithm will also serve as a pathfinder. Also, the mutations
should form a pattern or probability distribution. The algorithm
relies upon observing previous mutation to predict future
mutation, so the two must be interdependent.

In this project, several simplifications to the general
problem will be made for easier simulation. In any simulation,
mutation must be discretely quantified. Here, mutation will be
quantified in time steps, and every edge will take one time
step unit to traverse. Hence, edge weights will not represent
time but instead some generic cost. In a travel analogy where
edges represent roads and vertices represent cities, road
condition changes due to weather would be a time-based
mutation, but if each road section had a toll that changed
every hour, and everybody traveled at a constant speed, then
it could be accurately modeled with a mutating weight graph.
Edge weights must remain positive doubles. If the mutation
renders the weight too large, then it will be reverted to the
maximum double value, and similarly for weights too small.
Also, the algorithm design will be tailored towards mutation
which is essentially random, where the edge weight mutation
is only dependent on the edge weight of that edge at the
previous time step. Specifically, the mutation is assumed to
be independent of time, graph structure, and other edge
weights.

As of now, the algorithm runs a lot better than an algorithm
that doesn't take mutations into account, such as Dijkstra's
algorithm, would. For every case tried so far, the proposed
algorithm has reached the end with a significantly lower cost
than the Dijkstra would have. This difference sometimes got as
high as a factor of 5, because the Dijkstra pathfinder would
often get stuck in choke points because the path it found earlier
has changed and one of the edges no longer exists, sometimes
forcing it to go back on itself. When Dijkstra's goes back on
itself, it automatically wastes two turns' worth of time and cost
and gets nowhere. However, the chance that our algorithm
wastes time and cost is much, much lower due to its ability to
predict mutations. Sometimes it will count on a edge becoming
available in order to progress, but these assumptions are
completely reasonable because either the path is far away and
will have a lot of time to mutate, or has been seen as drastically
changing from its history data. The algorithm can also detect
when it may get stuck and avoid paths that may cause it to be
stuck for long periods of time. Note that these are not really
results, just the current progress. Add results next quarter.

Define randomized distance as the distance to destination
node taking graph structure into account. For example, a vertex
with two unit length paths leading to the destination will be
closer in this sense than a vertex with only one. We use steady-
state convergence and methods from numerical analysis to set
up a system of equations we want the randomized distances to
satisfy, and solve the system. We use dynamic programming to
approximate distance to heuristically closer points first, then
base calculations for farther vertices on these approximations.
We use the previous states of the graph: we can use this data
to develop a hashmap to approximate future mutations. We use
genetic programming to find optimal values for algorithm-
specific variables. We focus on sparse graphs, graphs where
the number of edges is significantly less than the square of the
number of vertices. The edge weights are limited to positive
doubles so mutation will be somewhat controlled; edge weights
that are too large will never be traversed anyway. Complexity
will be limited to $O(E^2\log(E)+V^2\log(V))$.

S

E

Example graph

