
Pathfinding Algorithms for Mutating Graphs

Haitao Mao
Computer Systems Lab 2007-2008

Abstract

Algorithms

Background

Results and Conclusions

Consider a map of an unknown place represented as a 
graph, where vertices represent landmarks and edges 
represent connections between landmarks. You have current 
information on the time it will take to travel between landmarks, 
as well as an archive about how the travel times changed 
through the past. You have a preset destination that you want to 
reach as fast as possible. Pathfinding algorithms for static 
graphs involve computing the whole path from start to 
destination, but if the weights are rapidly changing due to some 
extreme condition of the place, then calculating the whole path 
in the beginning will not be feasible. The purpose of this project 
is to design and compare different pathfinding algorithms for a 
graph whose edge weights mutate randomly to a significant 
extent. Algorithms may involve probabilistic analysis, dynamic 
programming, heuristics, genetic programming, and variations 
of standard shortest-path algorithms such as Dijkstra's 
algorithm.

For this problem, the structure of the graph will be static; 
that is, no vertices or edges will be added or removed. Only 
the edge weights will be dynamic, and they must change to a 
significant extent for the algorithm to be effective. If the 
mutations are negligible, then a standard shortest path 
algorithm will also serve as a pathfinder. Also, the mutations 
should form a pattern or probability distribution. The algorithm 
relies upon observing previous mutation to predict future 
mutation, so the two must be interdependent.

In this project, several simplifications to the general 
problem will be made for easier simulation. In any simulation, 
mutation must be discretely quantified. Here, mutation will be 
quantified in time steps, and every edge will take one time 
step unit to traverse. Hence, edge weights will not represent 
time but instead some generic cost. In a travel analogy where 
edges represent roads and vertices represent cities, road 
condition changes due to weather would be a time-based 
mutation, but if each road section had a toll that changed 
every hour, and everybody traveled at a constant speed, then 
it could be accurately modeled with a mutating weight graph. 
Edge weights must remain positive doubles. If the mutation 
renders the weight too large, then it will be reverted to the 
maximum double value, and similarly for weights too small. 
Also, the algorithm design will be tailored towards mutation 
which is essentially random, where the edge weight mutation 
is only dependent on the edge weight of that edge at the 
previous time step. Specifically, the mutation is assumed to 
be independent of time, graph structure, and other edge 
weights. 

As of now, the algorithm runs a lot better than an algorithm 
that doesn't take mutations into account, such as Dijkstra's 
algorithm, would. For every case tried so far, the proposed 
algorithm has reached the end with a significantly lower cost 
than the Dijkstra would have. This difference sometimes got as 
high as a factor of 5, because the Dijkstra pathfinder would 
often get stuck in choke points because the path it found earlier 
has changed and one of the edges no longer exists, sometimes 
forcing it to go back on itself. When Dijkstra's goes back on 
itself, it automatically wastes two turns' worth of time and cost 
and gets nowhere. However, the chance that our algorithm 
wastes time and cost is much, much lower due to its ability to 
predict mutations. Sometimes it will count on a edge becoming 
available in order to progress, but these assumptions are 
completely reasonable because either the path is far away and 
will have a lot of time to mutate, or has been seen as drastically 
changing from its history data. The algorithm can also detect 
when it may get stuck and avoid paths that may cause it to be 
stuck for long periods of time. Note that these are not really 
results, just the current progress. Add results next quarter.

Define randomized distance as the distance to destination 
node taking graph structure into account. For example, a vertex 
with two unit length paths leading to the destination will be 
closer in this sense than a vertex with only one. We use steady-
state convergence and methods from numerical analysis to set 
up a system of equations we want the randomized distances to 
satisfy, and solve the system. We use dynamic programming to 
approximate distance to heuristically closer points first, then 
base calculations for farther vertices on these approximations. 
We use the previous states of the graph: we can use this data 
to develop a hashmap to approximate future mutations. We use 
genetic programming to find optimal values for algorithm-
specific variables. We focus on sparse graphs, graphs where 
the number of edges is significantly less than the square of the 
number of vertices. The edge weights are limited to positive 
doubles so mutation will be somewhat controlled; edge weights 
that are too large will never be traversed anyway. Complexity 
will be limited to $O(E^2\log(E)+V^2\log(V))$.
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