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Consider a map of an unknown place represented as a 
graph, where vertices represent landmarks and edges 
represent connections between landmarks. You have current 
information on the time it will take to travel between landmarks, 
as well as an archive about how the travel times changed 
through the past. You have a preset destination that you want to 
reach as fast as possible. Pathfinding algorithms for static 
graphs involve computing the whole path from start to 
destination, but if the weights are rapidly changing due to some 
extreme condition of the place, then calculating the whole path 
in the beginning will not be feasible. The purpose of this project 
is to design and compare different pathfinding algorithms for a 
graph whose edge weights mutate randomly to a significant 
extent. Algorithms may involve probabilistic analysis, dynamic 
programming, heuristics, genetic programming, and variations 
of standard shortest-path algorithms such as Dijkstra's 
algorithm.

For this problem, the structure of the graph will be static; 
that is, no vertices or edges will be added or removed. Only 
the edge weights will be dynamic, and they must change to a 
significant extent for the algorithm to be effective. If the 
mutations are negligible, then a standard shortest path 
algorithm will also serve as a pathfinder. Also, the mutations 
should form a pattern or probability distribution. The algorithm 
relies upon observing previous mutation to predict future 
mutation, so the two must be interdependent.

In this project, several simplifications to the general 
problem will be made for easier simulation. In any simulation, 
mutation must be discretely quantified. Here, mutation will be 
quantified in time steps, and every edge will take one time 
step unit to traverse. Hence, edge weights will not represent 
time but instead some generic cost. In a travel analogy where 
edges represent roads and vertices represent cities, road 
condition changes due to weather would be a time-based 
mutation, but if each road section had a toll that changed 
every hour, and everybody traveled at a constant speed, then 
it could be accurately modeled with a mutating weight graph. 
Edge weights must remain positive doubles. If the mutation 
renders the weight too large, then it will be reverted to the 
maximum double value, and similarly for weights too small. 
Also, the algorithm design will be tailored towards mutation 
which is essentially random, where the edge weight mutation 
is only dependent on the edge weight of that edge at the 
previous time step. Specifically, the mutation is assumed to 
be independent of time, graph structure, and other edge 
weights. 

After extensive testing on random graphs generated with 
various randomized routines, we conclude that the algorithm 
runs a lot better than an algorithm that doesn't take mutations 
into account, such as Dijkstra's algorithm, would. For every 
case tried so far, the proposed algorithm has reached the end 
with a significantly lower cost than the Dijkstra would have. This 
difference sometimes got as high as a factor of 5, because the 
Dijkstra pathfinder would often get stuck in choke points 
because the path it found earlier has changed and one of the 
edges no longer exists, sometimes forcing it to go back on 
itself. When Dijkstra's goes back on itself, it automatically 
wastes two turns' worth of time and cost and gets nowhere. 
However, the chance that our algorithm wastes time and cost is 
much, much lower due to its ability to predict mutations. 
Sometimes it will count on a edge becoming available in order 
to progress, but these assumptions are completely reasonable 
because either the path is far away and will have a lot of time to 
mutate, or has been seen as drastically changing from its 
history data. The algorithm can also detect when it may get 
stuck and avoid paths that may cause it to be stuck for long 
periods of time. These and many other aspects of the algorithm 
cause it to be extremely accurate and efficient.

Define randomized distance as the distance to destination 
node taking graph structure into account. For example, a vertex 
with two unit length paths leading to the destination will be 
closer in this sense than a vertex with only one. We use steady-
state convergence by creating a system of equations that the 
randomized distances should satisfy, and then approximating 
the solutions repeatedly until the results converge. We use 
dynamic programming to approximate distance to heuristically 
closer points first, then base calculations for farther vertices on 
these approximations. We use the previous states of the graph: 
we can use this data to develop a hashmap to approximate 
future mutations. We use genetic programming to find optimal 
values for algorithm-specific variables. We focus on sparse 
graphs, graphs where the number of edges is significantly less 
than the square of the number of vertices. The edge weights 
are limited to positive doubles so mutation will be somewhat 
controlled; edge weights that are too large will never be 
traversed anyway. Complexity will be limited to $O(EV)$.
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