
Pathfinding Algorithms for Mutating Graphs

Haitao Mao
Computer Systems Lab 2007-2008

Abstract

Algorithms

Background

Results and Conclusions

Consider a map of an unknown place represented as a
graph, where vertices represent landmarks and edges
represent connections between landmarks. You have current
information on the time it will take to travel between landmarks,
as well as an archive about how the travel times changed
through the past. You have a preset destination that you want to
reach as fast as possible. Pathfinding algorithms for static
graphs involve computing the whole path from start to
destination, but if the weights are rapidly changing due to some
extreme condition of the place, then calculating the whole path
in the beginning will not be feasible. The purpose of this project
is to design and compare different pathfinding algorithms for a
graph whose edge weights mutate randomly to a significant
extent. Algorithms may involve probabilistic analysis, dynamic
programming, heuristics, genetic programming, and variations
of standard shortest-path algorithms such as Dijkstra's
algorithm.

For this problem, the structure of the graph will be static;
that is, no vertices or edges will be added or removed. Only
the edge weights will be dynamic, and they must change to a
significant extent for the algorithm to be effective. If the
mutations are negligible, then a standard shortest path
algorithm will also serve as a pathfinder. Also, the mutations
should form a pattern or probability distribution. The algorithm
relies upon observing previous mutation to predict future
mutation, so the two must be interdependent.

In this project, several simplifications to the general
problem will be made for easier simulation. In any simulation,
mutation must be discretely quantified. Here, mutation will be
quantified in time steps, and every edge will take one time
step unit to traverse. Hence, edge weights will not represent
time but instead some generic cost. In a travel analogy where
edges represent roads and vertices represent cities, road
condition changes due to weather would be a time-based
mutation, but if each road section had a toll that changed
every hour, and everybody traveled at a constant speed, then
it could be accurately modeled with a mutating weight graph.
Edge weights must remain positive doubles. If the mutation
renders the weight too large, then it will be reverted to the
maximum double value, and similarly for weights too small.
Also, the algorithm design will be tailored towards mutation
which is essentially random, where the edge weight mutation
is only dependent on the edge weight of that edge at the
previous time step. Specifically, the mutation is assumed to
be independent of time, graph structure, and other edge
weights.

After extensive testing on random graphs generated with
various randomized routines, we conclude that the algorithm
runs a lot better than an algorithm that doesn't take mutations
into account, such as Dijkstra's algorithm, would. For every
case tried so far, the proposed algorithm has reached the end
with a significantly lower cost than the Dijkstra would have. This
difference sometimes got as high as a factor of 5, because the
Dijkstra pathfinder would often get stuck in choke points
because the path it found earlier has changed and one of the
edges no longer exists, sometimes forcing it to go back on
itself. When Dijkstra's goes back on itself, it automatically
wastes two turns' worth of time and cost and gets nowhere.
However, the chance that our algorithm wastes time and cost is
much, much lower due to its ability to predict mutations.
Sometimes it will count on a edge becoming available in order
to progress, but these assumptions are completely reasonable
because either the path is far away and will have a lot of time to
mutate, or has been seen as drastically changing from its
history data. The algorithm can also detect when it may get
stuck and avoid paths that may cause it to be stuck for long
periods of time. These and many other aspects of the algorithm
cause it to be extremely accurate and efficient.

Define randomized distance as the distance to destination
node taking graph structure into account. For example, a vertex
with two unit length paths leading to the destination will be
closer in this sense than a vertex with only one. We use steady-
state convergence by creating a system of equations that the
randomized distances should satisfy, and then approximating
the solutions repeatedly until the results converge. We use
dynamic programming to approximate distance to heuristically
closer points first, then base calculations for farther vertices on
these approximations. We use the previous states of the graph:
we can use this data to develop a hashmap to approximate
future mutations. We use genetic programming to find optimal
values for algorithm-specific variables. We focus on sparse
graphs, graphs where the number of edges is significantly less
than the square of the number of vertices. The edge weights
are limited to positive doubles so mutation will be somewhat
controlled; edge weights that are too large will never be
traversed anyway. Complexity will be limited to $O(EV)$.

S

E

Path for an example graph

	Slide 1

