Programming Language Translation

Jamie McAtamney
TJHSST Computer Systems Lab
2007-2008

Abstract

With the modern emphasis on program portability and the new need to run
programs on multiple computers in networks or over the Internet, it would
be very useful for C programmers to be able to translate either “legacy” C
programs or newly written programs into Java to make them more portable;
however, currently translation by hand is seen as too tedious and time-
consuming, while computer algorithms to do so are not very accurate. A
combination of keyword search/replace and algorithms to translate C
structs to Java classes and C “include” modules to Java “import” modules
can help alleviate or solve the problem of tedious or inaccurate translations

specifically between C and Java.

Background

While the differences among programming languages have been studied
extensively in comparative languages courses and otherwise, little
progress has been made in the area of automated programming
language translation. The problems involved with automated translation
occur because programming languages are too dissimilar for direct
word-for-word translation. Even syntactically similar languages such as C
and Java have differences that make simple search-and-replace difficult.
For example, while the C char arrays have an analog in Java Strings,
because they are two different data structures the methods for accessing

them are very different, and this discrepancy must be taken into account.

A related difficulty is C's use of pointers: A “string” in C is not simply an

Ele Edit View Terminal Go Help Fle Edit View Terminal Go Help) array of chars, it is a pointer to an array of chars—expressed as
1 node; et b et [~ “char®”—which means that one cannot simply copy, compare, or
int whitespacelehi | _ [otherwise manipulate strings in the same way one may manipulate ints
{ int whitespace (char ch) r]
return ch=" "'||ch="\n"'||ch="\t"; { or chars.
} return ch = = ! "IN'ch = = "'\n'| § §)
1 B } 5 Terminal - lifeSerial-c (=) = VIM 5 Terminall - Test.javal (~)/= VM =E)E)
int main({int argc, char* argv[]) . : : : . : : :
{ _ public static void main(String[] args) File Edit Wiew Terminal Go Help File Edit Wiew Terminal Go Help
char e { #include <stdio.h> import java.io.*;
;QEE“ g;;ile- char ch ; #include <stdlib.h> import java.lang.*;
node* t=NULL.*p, *q; int dir #include <math.h> import java.util.*;
if(arge<2) e FILE * infile ; public class Test
{ node * t = NULL , * p , *4 #define N 51 {
-- INSERT -- 16,1 7% if (argc < 2) public final static int N=51;
{ [~ double oldArray[N*N],newArray[N*N]; static double[] oldArray=new double[N*N];
]) o))] int nb,minX,maxX,minY, maxy; static double[] newArray=new double[N*N];
The first step of the translation process from C to Java: The original file (left) is read in and double top[N],bottom[N],left[N],right[N]; static int nb,minX,maxX,minY,maxy; |
fokenized, and any syntax-independent lines—such as the main() method—are translated static double[] top=new double[N]; |
(7ﬂJht) int neighbors(int x) static double[] bottom=new double[N];
’ { static double[] left=new double[N];
nh=B| static double[] right=new double[N];
@ public static int neighbors(int x}
- — . 15,6-13 {
(& Teamfiel o srmsiiess B Terminal - Test.java (~) - MM 236 nb=of]
T e o T File Edit View Terminal Go Help @)
#include <stdio.hs fport java.io.*; — -
1mp$l_f Jr?*ff;usli*: After the translation process: The original file (left) has been translated (right). Note the C
typedef struct data ?” 16 CHaS #include statements changing to Java import statements, C array declarations changing to Java
{ class Table array constructors, and the addition of a class declaration.
double x; q
int y; .
char* s; private double x; P R I
\ ailg rivate int i rogress and Results
typedef struct variable F‘HE“ At this point, several translation modules have been implemented:
: doubi ey x=0.0; Translates primitive types, such as char” to String
b L » Translates C preprocessor directives (“#include” to “import” and
ctruct colloams } - | 1 “#define” to variable declaration)
{ 1o Frp o « Translates C array declarations to Java array constructors
int b; X=X_; * Translates input and output methods and structures such as
yeollection] = input/output streams and files
- } * Translates method and module headers
* Translates most packages: math, string, stdlib, stdio, and more
Structs in the original file (left) are translated to inner classes, with one example given above * Handles throwing Exceptions
(right). Note the addition of two constructors for the inner class. » Determines whether FILE*s are “input” (should become Scanners)
FILE INPUT or “output” (should become PrintStreams) FILE*s
» Determines whether PrintStreams should use print() or append()
based on whether they are opened in C for writing or appending
C Reader » Translates basic graphics commands from OpenGL to JOGL
FIRST PASS SECOND PASS « Translates C structs to Java inner classes
e e e e s e e . * Translates pointers
! Future !
Modules
JL---------
4 Primitives | % , .
’ Module AN Graphics Module FILE OUTPUT

Array Module
l Structs Module -
Package
Modules

Preprocessor
Modules

Structs Module

Exceptions
Module

Pointers Module

FILE Module

S

