TJHSST Computer Systems Lab Senior
Research Project Proposal

C to Java Translator
2007-2008

Jamie McAtamney

October 31, 2007

Abstract

The purpose of this project is to create a fully functional, fast,
and efficient translator to convert programs in C code to Java code.
While C is a language which is broad in scope and fast in execution,
its implementation is platform-specific; this can be a disadvantage for
programs expected to be used on multiple platforms and operating sys-
tems or run over the Internet. In addition, while C gives a programmer
greater control over computer architecture and program structure, a
higher-level language such as Java can be easier for amateurs to learn
and understand; also, Java implements variable types such as Strings
which make programming easier even for experienced programmers,
as some algorithms and data structures are already defined for them.
Programming language translation is a sub-field of computational lin-
guistics that has not been widely researched, and while there are a
few companies or private individuals who have written programs to
translate between a limited number of languages, the field remains
largely unexplored. The number of companies or private individuals
who would like or require the translation of older programs into a
different language vastly outnumbers the translation algorithms avail-
able, and of these groups, those who require old C programs translated
into Java are particularly numerous while C-to-Java translation algo-
rithms are particularly rare.



1 Introduction

1.1 Scope of Study

Conversion of basic syntax, input/output methods, and control structures
will be included, and translation of included C modules to imported Java
modules will be included if time permits. While little research has been done
pertaining to programming language translation, more practical information
is needed than theoretical information, namely, the different syntax struc-
tures, grammar, and abilities of C and Java. The area of overlap between
C and Java is significant, but there are still many differences between the
two languages which would make a single perfectly-comprehensive transla-
tor almost impossible; for this reason, translation will begin with more basic
concerns, such as method headers, input/output routines, and variables, be-
fore gradually moving on to more complex tasks, concluding eventually with
translation of C “include” module methods to their Java “import” equiva-
lents.

As a comprehensive translator could be difficult to achieve in a single
year, development will progress in stages. The first stage will deal with the
basics of each language: input/output, flow control (switch statements, for
loops, etc.), variable types and arrays, and method headers, not necessarily
in that order. The second stage will move onto translation of structs into
classes, as well as minor topics that were not covered in the first stage but
that are extremely syntactically similar in both languages, such as bit shifting
and packages such as jmath.h;. The final stage would involve translating as
much of the other packages as time permits, as well as other differences that
might have been missed in prior stages. Stage 1 is expected to be finished
quickly in relation to the others, with Stages 2 and 3 each increasing in time
required.

1.2 Expected results

In the process of translating between C and Java, the similarities and dif-
ferences between the two will become more apparent, which will both assist
later attempts at translation and highlight the strengths of each language.
Insights gained from this translation process may subsequently be applied
to translation between other languages, eventually lessening the barriers be-
tween operating systems and computer architecture and allowing the best



language for a given task to be used regardless of system requirements.

With this project, I would like to learn what the differences between C
and Java are, aside from the obvious fact that C is a lower-level language
than Java, and why the differences are what they are. I would also like to
add to general knowledge in the area of programming language translation,
as it is neglected by the majority of computer scientists, and fill in the gaps
in that knowledge with my own experiences with the project. Finally, I
enjoy a challenge, and I would like to attempt a task which the majority of
programmers believe is too complex.

1.3 Type of research

The general area of research into which my project is classified is " use-inspired
basic research,” research that attempts to pursue fundamental understanding
and which is motivated by a question of practical application.

2 Background and Review of Current Research

Little research has been done in the area of programming language transla-
tion, as it is widely regarded as too difficult to deal with different syntax and
different included models, but some headway has been made into the field. In
particular, a company named Jazillion provides a pay-per-program approach
to C-to-Java translation and claims to generate "natural” code similar to
that a human programmer would write. Even this program, however, does
not guarantee perfect translation and requires significant client involvement
to customize the algorithm to the client’s needs; language translation is still
a field on the frontiers of computer science. There are also many free (but
more limited) programs on the Internet which can handle particular aspects
of a program; for example, one might be able to translate the C printf() func-
tions to Java’s System.out.print(), while another might be able to translate
method headers.

No research papers or projects specifically written about the translation
of C to Java (or even Java to C) have been made available on the Internet.
There are a few papers dealing with translating COBOL to C and a few more
on translating COBOL to Java, which could provide a few pointers; however,
all of the papers deal with translation by hand, so the vast majority are
inapplicable to automated translation processes. Jazillion’s translator would



probably provide the most inspiration for my project, as the company has
made their design philosophy and goals available on its website, but my
project will differ in terms of the language used for the translator as well as
the design scheme, as perfection will necessarily be sacrificed for modularity.
There is one paper dealing with automated language translation in general,
however; “The Realities of Language Conversion” by Terekhov and Verhoef
examines the difficulties inherent in any automated translation processes and
how to fix them, which will be very useful for my project

3 Procedures and Methodology

The translation program itself will be written in Java; though I have pro-
grammed in C more recently than in Java, and C runs more quickly than
Java, which can be a consideration when attempting translation of a long
or complex program, Java’s previously-implemented tokenizer and String
structures are necessary for the translator to function optimally. I have a
repertoire of C programs from Computer Architecture last year, with var-
ied methods, constructs, and structures among them, which should make
a diverse and strong set of test cases for the translator. I will also search
for programs incorporating structures and algorithms which my programs
do not incorporate, though it will not be possible to incorporate all possible
permutations of C code for the translator. In terms of a visual display for my
project, aside from generating a percentage of programs correctly translated,
it does not lend itself to numerical judgment of progress, instead relying on
a comparison of code to determine accuracy.

Owing to the nature of language translation, testing will necessarily in-
volve more methodical than stochastic testing; though a given program may
contain seemingly random inputs, the test cases as a whole will contain a
broad and comprehensive spectrum of test cases that will test every part of
the program. Testing a translation program is simple—if the program trans-
lates the cases for which you have created algorithms and passes over un-
translatable sections without changing them or causing errors, the program
works as intended. More generally, if the translated portions of the program
compile and run in the same way as the original program, the translator is a
success. A binary system such as this—either an approach works or it doesn’t—
makes error checking and correction relatively simple; as well, because the
exact output for a given input is known precisely (in other words, the pro-



cess rather than the destination is the object), there is no complex model
necessary to deduce or learn the correct output and therefore performance
validation will not be an issue. As my project will involve development in
stages, it will require a large degree of modularity so as to permit the addi-
tion of new cases as translations are implemented. Otherwise, my project is
fairly structure-independent, not requiring a single approach or algorithm to
be successful.

4 Expected Results

By the end of the year, I expect a functional and efficient, if not completely
comprehensive, translator able to convert the majority of C code into Java
with high accuracy. When graphical representations of progress are required,
side-by-side comparisons of code will by most useful to judge progress, as well
as an analysis of the program’s accuracy over the course of the year. The
principles of my project should be widely applicable to translation between
any two languages, as well as any researchers interested in computational
linguistics. While the contributions of my project to the public at large
might not be particularly memorable, I would hope it would be significant.



