
TJHSST Computer Systems Lab Senior
Research Project

The Engineering of Functional Designs in the
Game of Life

2007-2008

Liban Mohamed

June 6, 2008

Abstract

Conway’s Game of Life is a set of rules in a two dimensional cellular
automata grid. This ruleset was specifically chosen by John Conway
for the ability to create stable patterns as well as the difficulty of cre-
ating patterns which grow without bound. This difficulty was rather
quickly overcome by Bill Gosper’s glider gun, which opened up the
ability to create binary computational devices such as logic gates. As
soon as the possibility of binary computational devices in the Game
of Life was discovered, it was realized that patterns could be designed
in the Game of Life which could symbolically carry out computations.
This project endeavors to facilitate in the design and creation of func-
tional patterns in the Game of Life.

1 Introduction

1.1 Scope of Study

This project involves the design and coding of a high functioning cellular
automata interface. The purpose of the creation of this interface is the assis-
tance it is able to provide with the design and creation of functional patterns

1



in cellular automata. Ideally, this interface would endow a user with the
capability to design a pattern to do anything in any given cellular automata
ruleset that is possible in said ruleset as well as display the evolution of that
pattern. This interface is broken down into two parts which help with two
goals of the user: the design, and the creation of patterns. The creation of
patterns in the game of life is assisted by a highly flexible cellular automata
editor, with features so abundant they’re falling out of its ears. The second
portion of the interface is a program which assists in the design of functional
patterns by providing the user with a way to search for patterns that evolve
into user-specified patterns in a given number of generations.

1.2 Type of research

This project involves pure applied research. None of the problems that this
project attempts to address have not been tackled before and the trick is
to find, using computer searches, patterns which have the functionality that
will be required. This will all be new to me, but it is the nature of cellular
automata that fundamental understanding is impossible to achieve: cellular
automata are notable precisely for the ability to defy prediction.

2 Background

As previously mentioned, a man by the name of Paul Rendell spent a number
of years developing a finite Turing machine extensible to universality in Con-
way’s Game of Life. His project is the extreme of complexity, but others have
created logic gates, most notably Andrew Adamatzky’s LogiCell, presented
in his Collision Based Computing. With respect to Rendell, two rather large
extensions are possible on his work. Firstly, he created his Turing machine
with extensibility to universality specifically in mind, meaning one could use
his Turing machine as a template to create a universal Turing machine. In
addition to that, Rendell is currently working on create a stack cell genera-
tor, which would generate tape for his Turing machine, effectively giving it
infinite tape.

This project differs from the other projects in that it endeavors to create
not an end product such as a Turing machine or specific logic gates but
rather a method of producing these end products and subsequently showing
them off to friends. The end product of this project is capable of reproducing

2



others’ results as well as generating some of its own.

3 Development

The current edition of my cellular automata editor and runner functions to
run any 2 dimensional cellular automata setup using von Neumann neigh-
borhoods. The program is highly efficient, running at up to 200Hz in the
Systems Lab computers. The inputs may be either clicked into the grid or
loaded from a text file of on and off states. In the interface, a number of use-
ful functions have been implemented, including the selection and running of
sub-grids, copying and pasting rectangular areas of the grid, clearing selected
areas, and the aforementioned saving and loading of patterns. Screenshots
displaying the loading of a pattern and the clearing of a selected area are
displayed here.

(a) Loading a pattern (b) Clearing an area

The other part of the cellular automata interface, the search function,
is functional as well. This part of the interface presents the user with two
grids of cells, which the user then fills with different sorts of cells - alive, dead,
unspecified, or self-referential - and then asks to find all pertinent inputs. For
the input grid, cells that are alive are constrained to be alive in any of the
possible inputs that the program supplies, cells that are dead are constrained

3



to be dead in any of the possible inputs that the program supplies, and cells
that are unspecified can be either alive or dead in any of the possible inputs
and thus require the program to check both scenarios. For the output grid,
cells that are specified to be dead must be dead at the end of the run of each
possible input, cells that are specified to be alive must be alive at the end of
the run of each possible input, and it does not matter whether the cells that
are unspecified are alive or dead. For the self-referential cells, which may
only be placed in the output grid, the state of that cell at the end of the run
of each possible input must be the same as it was at the time of the input.
As this idea is rather cumbersome in words, images of various searches are
included in the results section. It should be noted that this portion of the
program also implements the various functions that the editor implements,
such as copying and pasting, with the exception of writing patterns to and
loading patterns from a file.

4 Results and Discussion

Very little attention will be given to the portion of the program which runs
cellular automata patterns as either the function that it serves needs no
explanation or the reader has no hope of understanding any part of anything
else that will be said and should devote themselves to more fruitful endeavors
than reading this paper.

For the search program, there is a good deal of discussion to do. So
that the user fully understands the functioning of the search program, I will
go into some detail about how it is used here. The most trivial use of the
search function is the verification that one arrangement of dead and alive cells
leads to another arrangement of dead and alive cells. This setup involves no
unspecified cells, and the user receives a quick yes or no answer as to whether
the pattern specified in the input becomes the pattern specified in the output
at any point in the time frame delineated by the user.

The next use of the search program would be if a user knew the shape of a
pattern that evolved in a particular manner, but did not remember the state
of a smattering of the cells. If this were the case, the user would input as much
of the input as he knows, placing unspecified cells where knowledge is lacking,
and fill in the output grid completely, such as in the following screenshot.

4



This particular search produces two results, both of which are supplied by
the program and are displayed here. If the user had only cared about a

(a) The first result (b) The other result - look familiar?

certain part of the output, the user could make the rest of the cells in the
output unspecified.

The self-referential cells were designed with one thing in mind: oscillators.
In order for an output to match an input, the state of these cells must be the
same as it was in the input. To search for every oscillator or still life in a four
by four square, the user would make a four by four grid of cells in the input un-
specified, and then make the corresponding square of cells in the output self-

referential.

5



This search returns 123 results, which may seem surprising given the sim-
plicity of the result. This occurrence can be explained by the fact that every
result appears multiple times rotated and translated about the area of un-
specified cells, giving many redundant results.

(a) Result 1 (b) Result 15

(c) Result 23 (d) Result 57

This first result is an area of dead cells, all of which do indeed return to
their initial state. The fifteenth result is an oscillator with a period of two
generations. The twenty-third result is another still life. The fifty-seventh
result is a translation and rotation of the fifteenth result.

The last sample search that I have designed would actually be useful, and
is designed to verify the existence of the Gosper gun. To produce this result,
the user places a square of unspecified cells exactly the size of the Gosper
gun in one area of the input, and then manually draws in a stream of gliders
exhibiting the same period as is found with any Gosper gun. In the output,
the user fills the area intended to be the Gosper gun with self-referential
cells, and makes the same stream of gliders, but makes it a few gliders longer.

6



Notable for users attempting to perform operations akin to the one de-
tailed in the last example, the time a given search takes is an unfortunate
function of the size of the grid, the maximum number of generations allowed,
and the number of unspecified input cells. The last variable is the most im-
portant in the function for any number of cells more than a handful, and the
dependence of time on the number of unspecified cells is a big O of 2n, as each
new unspecified cell multiplies the number of possible inputs by two. Fifteen
unspecified cells comes with a reasonable run-time; the program takes around
half a minute to run. Twenty unspecified cells takes some fifteen minutes.
Running a search program with four hundred unspecified cells, around the
number of cells needed to contain a Gosper gun, requires more than a googol
years.

Another consideration for users of the search program is the number of
possible inputs that function to go from an input to a fairly generic output.
For example, the search for a blank grid detailed earlier presents the user
with 20,037 possibilities. Though most outputs are more specific than an
entirely blank grid, no user I know wants to sift through tens of thousands of
arrangements of cells to get to the one he wants. At the moment, all that the
user has to combat the constraints on the number of unspecified cells used
and the number of possible inputs generated are his own wits. It is absolutely
necessary for the user to be familiar with the uses of the various constraints
so that the solution set is as limited as possible. The setup we examined to
search for the Gosper gun, for example, was rather clever. Though I didn’t
have the googol years to test it, I’m fairly certain that the search would have
return the Gosper gun and only the Gosper gun.

7



4.1 Conclusion

The purpose of this project was to create a program which would assist in the
design and creation of cellular automata patterns. In some ways, especially
for relatively trivial sizes of patterns, this project was immensely successful.
If the user can find a way to determine the state of all but 15 cells in a desired
pattern, use of the program will be swift and successful. The capability of
the project to supply in one go large constructs such as hershel tracks and
glider guns, however, is limited by the nature of cellular automata and the
nature of the hunt.

If the success of this project must be reported on in a quantized manner
where the only acceptable answers are success or failure, this project would
be rated a success as it demonstrated much of the methodology used in the
type of work that it is meant to perform. That is not to say that there are
no possible extensions, though...

4.2 Recommendations

The recommendations that I have for this project for the most part involve
extensions and modifications to the second part of the project, the search
function. Firstly, I would translate the code to C, and modify the data
structures so each cell is represented by a bit. This change would have the
advantages of restricting the amount of memory required to run the program
and also decreasing the amount of time required due to the speed of bit
operations.

The second set of recommendations that I have for anyone interested in
expanding this project would be to do some work in pattern recognition.
Pattern recognition could benefit the functioning of this project in two ways.
Firstly, if done correctly, pattern recognition can be used to increase the
speed with which the program is able to evolve the grid of cells through
generations. Secondly, pattern recognition could be used to eliminate a large
number of extraneous possibilities in searches which involve large areas of
contiguous unspecified cells. This is the real gem of pattern recognition,
and could potentially be used to reduce the big O from 2n to something
significantly more manageable for large n.

The last set of recommendations that I have for the extension of this
project are more encouragement than than anything. At the commencement
of this project, my goal was to create a program which would go as far along

8



providing every capability that a user could wish for in designing patterns
for cellular automata. I have not completed this goal, and I do not believe
it is possible to complete it without infinite amounts of time for coding and
infinite computational capability. However, there are a number of small next
steps which I was not able to take but could be easily implemented by anyone
with the gumption. One would be some elegant way to deal with the edges
in the search function. Another would be an elegant combination of the two
separate programs that I have created for the task. One could also allow the
user to check the grid at multiple times using or, and, and xor to connect
these different arrangements at different times. The most innovation remains
to be done in the creation of different types of cells. In the search function,
I have defined two new types of cells: unspecified and self-referential cells.
There are many, many more possibilities, though, such as cells which refer
to other cells, either in their input or output stages, in checking for the
verification of a possible input.

References

[1] www.rennard.org/alife/english/logicellgb.html

[2] Collision Based Computing, by Andrew Adamatzky

9


