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Neural networks have been utilized for a vast range of 
applications, including computational biology. But the realism of 
these models remains in question. In the models of the auditory 
cortex, for example, the properties of neuronal populations are 
hard to fully characterize with traditional methods such as 
tuning curves. Spectro-temporal receptive fields (STRFs), 
which describe neurons in both the spectral and temporal 
domains, have been obtained in a variety of animals, but have 
not been adequately studied in computational models. The aim 
of this project is to address these issues by generating the 
spectro-temporal receptive fields on a basic, neural network 
model of the early auditory processing stages in the brain. As 
purposeful additions to the computational model are made, the 
new STRFs can be used to further analyze the changes to the 
properties of the neurons.

Computational biology is a growing field of computer science 
made to better model the complexities of the brain and other 
biological organs. The visual domain has already been 
studied to a great depth, but the auditory domain is still 
relatively new territory for computer models. Although many 
models have been created for the auditory domain, the actual 
realism of these models is hard to judge.
One way to judge the realism of the models is to compare 
them to their biological counterparts. But how can one 
compare computer-generated neurons to the real ones? 
Spectro-temporal receptive fields (STRFs) have been used in 
many different animals including birds and ferrets. These 
receptive fields characterize the linear response properties of 
neurons in the spectral (frequency) and temporal (time) 
domains.  In order to generate these STRFs, the responses 
of neurons to moving ripple stimuli are collected and 
transformed. The STRFs from the computational models can 
then be compared to STRFs from the literature, and can be 
quantitatively and qualitatively be analyzed. A basic, linear 
transform neural network has been used to generate the 
initial receptive fields
Even as computational power exponentially increases, 
without the use of models and neural networks, the utility of 
that processing power goes to waste. With neural networks, 
computers will be able to perform many functions originally 
thought only humans can possess, such as pattern 
recognition and reasoning. Furthermore, neural networks of 
the brain will help scientists understand ourselves and our 
capabilities and aid doctors in complex medical pathologies. 

The ear is the first step in a long, auditory processing chain. In the 
inner ear, mechanical signals are converted into electrical ones in 
a processing known as transduction. The cochlea is largely 
responsible for this process. In the cochlea, the coiled tubes 
respond to different frequencies of sound at different places. For 
instance, a frequency at 3 kHz will trigger different cells to 
respond than a frequency at 10 kHz. In computational biology, this 
phenomenon is represented through the use of spectrograms, 
frequency v. time distributions of sound stimuli. Although there are 
many ways to represent sound stimuli in the brain, spectrograms 
have been quite popular with many scientists.
As neurons respond to stimuli, they communicate with other 
neurons using neurotransmitters. Dr. Hebb, a famous 
psychologist, hypothesized that two neurons that are 
simultaneously active, then the connection between the two 
neurons would be strengthened. This process is known as 
synaptic plasticity, and is also important in training neural 
networks of the brain.
Scientists have a relatively clear idea on how some basic 
processing takes place in the brain. But scientists also want to 
know some specific properties of neurons. Receptive fields have 
been used quite extensively to determine those properties of the 
neurons. Spectro-temporal receptive fields (STRFs) are no new 
topic in the auditory biological systems. The STRFs have been 
analyzed in many types of animals, including ferrets and birds. 
The literature shows that STRFs plot not only the responsive 
areas of the sample neurons, but they also illustrate the 
interaction between excitatory and inhibitory processes. 
In general, receptive fields have been analyzed in a multitude of 
computational models. One paper by Rao and Ballard describes 
the construction of a model of the visual cortex that employs 
predictive coding. Predictive coding is a phenomenon theorized to 
take place in the brain where different cortices employ both top-
down and bottom-up processing to analyze information. These 
cortices receive data from lower cortical areas and predictions 
from higher cortical areas, and relay the error in those predictions 
to the higher cortical areas. Clearly, this is a vast simplification of 
the whole process, but it is a very interesting approach to 
computational models. This paper also illustrates the receptive 
fields that were generated using natural images as training stimuli. 
The use of STRFs is promising in both biological and 
computational systems.
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The above graph shows that after training, the 
weighted connections between the input layer 
and the output layer became frequency 
selective. The peaks in the graph show at which 
frequency a neuron responds most intensely to. 
This graph is an equivalent of tuning curves, 
because the graph shows which frequencies a 
neuron responds to. The disadvantage of this 
graph is that it does not show any temporal 
components, an integral part of auditory 
neurons. 

The current neural network is a two-layer, forward 
feeding and linear model of the early auditory 
processing stages in the brain. The first layer is the 
input layer. The input to the neural network is a 
spectrogram, a graph of frequency v. time, which 
was converted from a waveform of the sound 
stimulus using a Fourier transform. The first layer 
receives one timestep of auditory information at a 
time. A timestep is about 10 ms of auditory 
information. The second layer is the output layer, a 
matrix product of the input vector and weight vector. 
The weights between the two layers were first set at 
random values, then trained using Oja's rule. After 
the weights were trained, they were plotted and 
analyzed. 


