Computer Systems Lab 2007-2008:
Research Paper
Accurate 3D-Modeling of User Inputted
Molecules Using a Hill Climbing Algorithm

Ben Parr

January 24, 2008

Abstract

In order to better understand chemistry, chemists create 3D mod-
els of molecules. In a large introductory chemistry class, physical
models are not viable because the supplies needed to give each stu-
dent the opportunity to create even simple molecules are too costly.
Also, software available online can also be costly. The goal of my re-
search project is to create a program that will allow users to generate
accurate 3D models of simple molecules (i.e. not macromolecules).
Therefore, my project could help students in introductory chemistry
courses better understand the geometry of different molecules.

1 Introduction

The goal of my project is to create a free program that will allow users, such
as introductory chemistry students, to easily and intuitively create models
of molecules. While running the program, users will be able to create atoms
and bonds where they want them. Once they have everything created, with
just a click of the mouse, my program will position the atoms correctly. The
user will then be able to export the model so that it can be easily imported
at a later time. All of the models will also be rotatable and zoomable at all
times, allowing for a better understanding of the molecular geometry.



The first step of my project was creating the graphics for my program.
The second step was creating an intuitive user interface that would allow
users to easily create molecules. Both the first and second step of my program
were done using OpenGL. The third step of my program is to create the
algorithm that will accurately position the atoms. In order to do this, I will
use a hill-climbing algorithm.

2 Background

A lot of research has been done on modeling molecules and the techniques
to do so now have become quite advanced. Pharmaceutical companies have
invested thousands of dollars in programs to predict orientations of new com-
plex molecules. Large databases have been created, storing the orientations
of thousands of molecules. Chemists have modeled everything from RNA to
inorganic crystals. These programs have become increasingly more accurate
over the years. However, the cost of these programs has also increased, and
now very few people have access to them. For a beginning chemistry student
there are not many options to play around with molecules and learn their
different geometries. buying physical modeling sets for everyone in a intro-
ductory chemistry cousre is costly. Also, software on the Internet can also
be costly, sometimes a couple hundred dollars. Therefore, even today, a free
program to model simple molecules would be helpful.

3 Development

The first step to my project was creating the graphics for my models. The
graphics for my project are a much simplified version of real molecules:
spheres represent atoms and cylinders represent bonds. Nevertheless, the
results are sufficient.

The second step of my project was creating an easy and intuitive user in-
terface. Through mainly inputs from the mouse (and some keyboard input)
users can create atoms and bonds, select and delete atoms and bonds, im-
port and export models, draw single, double and triple bonds, choose which
element they want to draw, and position the atoms where they want. (For
atomic radius values, I used empirical values derived by J.C. Slater and pub-
lished in The Journal of Chemical Physics) With these features, users will



be able to easily create the models.

The third step of my project is creating the algorithm that will correctly
orient the atoms in the molecule. Since there are many variables accounting
for the actual orientation of the atoms and because I only have a limited
amount of time, I will need to limit the number of accounted variables. With
my set number of accounted variables, I will use an A.L. algorithm (hill-
climbing) to correctly orient the atoms in the molecule. The first variable
that I will account for will be the polarity of the bond. Once I get that
working, I will continue to add more variables, creating a better model.

Dynamic testing will not work for my project because an atom can not
bond with any random atom. Therefore, I will mostly use specific structural
and functional testing and path and branch testing.

4 Testing

Testing the graphic part of my program was simple; all I had to do was run
it and see if my program created the intended model.

Testing the user interface part of my program was a little more complex.
I had to think of everything that a user could do and account for the inputs.
However, my program runs as intended.

Now that I have all of the graphics and user interface done for my project,
I will now be able to start working on my algorithm to correctly orient the
atoms in the molecule. T will first start by only taking one variable into
account: the polarity of the bond. Once I get that working, I will then
add another. Once that one is working, I will start on another. Through
this process, my program will start to produce accurate representations of
different molecules.

In order to see if my program is constructing accurate models, I will
compare my models with the actual/accepted models. By doing this, I will
also be able to do error analyses. In order to thoroughly test my program,
I will test many different molecules and compare my results with the actual
orientations.



5 Results

The purpose of my project is to create a free program that will allow users
to easily and intuitively create models of molecules. Then, after the user
finished creating the molecule, the program will correctly position the atoms.
My project currently allows users to create molecules. A user can also rotate
the model and zoom it in and out. These functions help users get a better
picture of the molecule. However, I still need to work on the algorithm to
correctly position the atoms. This will be the focus of the third quarter.

References

[1] M.A. Fox and J.K. Whitesell, “Bond Lengths in Organic Compounds”,
Organische Chemie, 1994.
[2] D. Shreiner,M. Woo, and J. Neider,

OpenGL Programming Guide: The Official Guide to Learning OpenGL 6th Edition,
Addison-Wesley Professional, 2007.

[3] J.C. Slater, “Empirical Atomic Radius”, J. Chem. Phys. 39, p. 3199,
1964.

[4] R.C. Weast, M.J. Astle, and W.H. Beyer,
CRC Handbook of Chemistry and Physics, CRC Press, 1984.

[5] “OpenGL API Documentation”, Copyright 1997 - 2008, available at
http://www.opengl.org/documentation/



