
Accurate 3D-Modeling of User Inputted Molecules

Ben Parr
Computer Systems Lab 2007-2008

Thomas Jefferson High School for Science and Technology
Alexandria, Virginia

June 10, 2008

Abstract

In order to better understand the structure of
molecules, chemists create 3 dimensional molecular
models. These models help explain reactivity, polar-
ity and many other characteristics pertinent to chem-
istry. In a large introductory chemistry class, it is
too costly to provide each student with a physical
modeling set. Software available online can also be
costly. The goal of my research project is to create
a free application that will allow users to generate
3D models of simple molecules through an intuitive
and user friendly interface. Then, after the model
is created, the application will position the atoms in
the molecule correctly by using a Nelder Mead algo-
rithm. My project will help users better understand
the geometry of different molecules.

1 Introduction

Almost every student has to take an introductory
chemistry course sometime during their education.
One of the keys to understanding chemistry is un-
derstanding the geometry of molecules because the
shape of a molecule affects many characteristics of
the molecule. Since there are so many introductory
chemistry students, viable options for providing ex-
perience with molecular geometry are limited because
providing each student with a physical modeling set
or a professional application can be too costly. The
goal of my project is to create a free application that
will allow users to easily create accurate models of

simple molecules. The user will not need to have
any knowledge of molecular geometry prior to using
the application because while running the applica-
tion, users can click the ”Auto-Position Atoms” op-
tion. This option will attempt to position the atoms
correctly by using a Nelder Mead algorithm to min-
imize the energy of the current model. Therefore,
by using my application, users will be able to have
a complete understanding of the geometry of simple
molecules, and thus have a strong foundation to build
from during the rest of their chemistry courses.

Figure 1: Model of nicotine created by my applica-
tion.

1



2 Background

Many research labs have worked on applications
to model molecules, and the techniques to do so
now have become quite advanced. Pharmaceuti-
cal companies have invested thousands of dollars
in applications to predict orientations of new com-
plex molecules. Large databases have been created,
storing the orientations of thousands of molecules.
Chemists have modeled everything from RNA to in-
organic crystals. (Haussler) These applications have
become increasingly more accurate over the years.
However, the cost and complexity of these applica-
tions have also increased. Alternative options, such
as physical modeling sets and other applications on-
line can cost up to hundreds of dollars each. There-
fore, for a class with hundreds of introductory chem-
istry students, many of their options are too costly.

In order to allow users learn about the geometries
of different molecules, my application will attempt to
position the atoms correctly when the user chooses
the ”Auto-Position Atoms” option from the menu.
This function will use a Nelder Mead algorithm to
minimize the energy of the model. The Nelder Mead
algorithm was created by Nelder and Mead in 1965,
and uses the concept of a simplex in order to mini-
mize a function in a many-dimensional space. (Price)
A simplex is a polytope of N+1 vertices, with each
vertex containing N dimensions; therefore, for a prob-
lem with two variables, the simplex is a triangle in
2D space, and for a problem with three variables, the
simplex is a tetrahedron in 3D space. (See Figure 2)
The algorithm begins with an original simplex, which
must be large enough to avoid a local search that
would end when a local minimum is found instead
of the absolute minimum. The simplex should also
not be too large because a large simplex could affect
efficiency. (Kelly) The algorithm runs until the dif-
ference between maximum and minimum energies of
the simplex is less than a defined tolerance. My appli-
cation uses a variation of the Nelder Mead algorithm
outlined in ”Convergence Properties of the Nelder–
Mead Simplex Method in Low Dimensions,” which
contains five steps for each iteration of the algorithm:
order, reflection, expansion, contraction and shrink.
(Lagarias) Through these steps, the algorithm finds

the minimum energy.

Figure 2: An example of the Nelder Mead algorithm
using a simplex (red triangle) to find the minimum
of a problem with two dimensions. (Image from
web.cecs.pdx.edu)

3 Graphics and User Interface

The first part of the goal of my project was to cre-
ate an easy and intuitive interface. In order to do
this, I utilized OpenGL, which would handle both
the graphics and the user inputs. In order to rep-
resent molecules, I took the standard route: a much
simplified version where spheres represent atoms and
cylinders represent bonds. In order to allow users to
draw and manipulate these models, my application
handles input from both the keyboard and mouse.
Through this hardware, users can create atoms and
bonds, select and delete atoms and bonds, import
and export models, draw single, double and triple
bonds, choose which element they want to draw, and
position the atoms where they want. The application
uses empirical values of atomic radii derived by J.C.
Slater in order to draw atoms that are proportionally
correct. (Slater) With these features, users can easily
and quickly create models.

2



Figure 3: File created when the nicotine model was
exported. This file can then be imported at a later
time.

4 Nelder Mead Algorithm

The second part of the goal of my project was to have
the application orient the atoms of the molecules ac-
curately for the user. In order to do this, I imple-
mented a variation of the Nelder Mead algorithm.
(Lagarias) The dimension (N) of the problem de-
pends on how many atoms there are in the model.
Since each atom has a three values (x, y, z), N = 3
* (the number of atoms) in the model. The Nelder
Mead algorithm uses a simplex with N + 1 vertices
in order to find the minimum of the energy function.
Each vertex of the simplex contains N dimensions
and represents a different model orientation. There-
fore, the amount of memory needed in the algorithm
grows drastically as the number of atoms increases.
In order to make my code efficient, I used pointers in
C. Therefore, instead of having to pass a large array

of N elements, I just pass a pointer, saving time and
memory.

The energy function can be broken up into three
parts. The first part calculates the distance of each
pair of non-bonded atoms. Then, the function adds
the square of the inverse of this distance to the run-
ning total of the energy of the model (energy +=
1/(distance*distance)). Therefore, by trying to min-
imize the energy function, the Nelder Mead maxi-
mizes the distance between non-bonded atoms, which
will produce valid models because real atoms do push
away from each other. The next part of the energy
function calculates the absolute value of the differ-
ence between the current distance and the real dis-
tance between bonded atoms. The current distance
is the distance between the two bonded atoms in the
current orientation. The real distance is the distance
defined in a data file which contains distinct bonds
(based on what two atoms are bonded and what type
of bond it is: single, double or triple bond) and
the corresponding bond lengths derived from exper-
iments. (”Bond Lengths and Energies”) Therefore,
the Nelder Mead algorithm tries to get the distance
between bonded atoms as close as possible to the ac-
tual values. The third part of the function calcu-
lates all of the bond angles in the model and adds
the negative of the angle to the energy of the func-
tion. Therefore, the bond angles are maximized, fur-
ther pushing atoms away from each other. Since the
Nelder Mead function tries to minimize the energy
of the system, the minimum energy will occur when
non-bonded atoms are as far apart and bonded atoms
are the specified distance apart.

5 Results

The first part of my goal was completely met; all
graphics and user interface components have been
tested and work as expected. In order to test this
component of my project, I tried every variation of
input and observed the results. Each case was han-
dled correctly.

The second goal of my project was not completely
reached. The Nelder Mead algorithm does not work
perfectly for every simple molecule. Specifically, as

3



Figure 4: Above: Incorrectly oriented model of car-
bon dioxide before using the ”Auto-Position Atoms”
option. Below: Result of the ”Auto-Position Atoms”
option on the above model of carbon dioxide.

the number of atoms in the model increase, the er-
ror with the model created by the ”Auto-Position
Atoms” option increases. Molecules with only two
atoms work perfectly; the two atoms are the specified
distance apart after the application runs the Nelder
Mead algorithm.

Molecules with three atoms are almost correct. For
example, in the model of carbon dioxide, each oxygen
should by 121 picometers from the carbon atom. The
bond angle between the three atoms should also be
180 degrees. For a series of 5 tests on an incorrect ori-
entation of carbon dioxide, the average percent error

in the bond length was .0224%. The average per-
cent error in the bond angle for the same 5 tests was
.1822%.

The percent error increases as the number of atoms
increase. For example, the result of the Nelder Mead
algorithm on a model of benzene will be incorrect.
However, as apparent from Figure 5, the ring of
carbon atoms is created. Even though the auto-
positioning of the atoms is not 100 percent correct,
the output from the Nelder Mead algorithm should
still produce a helpful model.

Figure 5: Above: Incorrectly oriented model of ben-
zene before using the ”Auto-Position Atoms” option.
Below: Result of the ”Auto-Position Atoms” option
on the above model of benzene.

4



6 Conclusion

OpenGL was the correct choose for this application
because it allowed me to easily create the graphics
and user interface. By using C, I was able to make
the Nelder Mead algorithm much more efficient by
utilizing pointers. The Nelder Mead algorithm was
also sufficient for this application. Instead of imple-
menting complex derivatives that are needed in other
minimizing algorithms, the Nelder Mead algorithm
used basic math and simple steps in order to reach a
minimum. The current Nelder Mead algorithm in the
application, however, has two main problems. The
first problem is with large molecules. The Nelder
Mead should be able to find better models than it
currently does. By refining the Nelder Mead algo-
rithm, the results of the algorithm will become closer
to real models, even for larger molecules. Second, the
algorithm does not account for polarity in the model.
Therefore, a model of water will be auto-positioned
into a linear molecule. However, this would be incor-
rect because a water molecule is bent because of the
lone electron pair on the oxygen atom. Even though
there are two problems with the Nelder Mead algo-
rithm, the application would still be helpful for in-
troductory chemistry students because it could, at
the very least, give a rough model of the molecule.
However, fixing the two problems would allow the
application to create more accurate models.

References

[1] ”Bond Length and Energies”, available at
http://www.science.uwaterloo.ca/ cchieh/
cact/c120/bondel.html

[2] Fox, M. A., and Whitesell, J. K., ”Bond Lengths
in Organic Compounds”, Organische Chemie,
1994.

[3] Haussler, D., Brown, M. P. S., ”Rna modeling
using stochastic context-free grammars”, Uni-
versity of California, Santa Cruz , 1999.

[4] Kelly, C. T., ”Detection and Remediation of
Stagnation in the Nelder-Mead Algorithm Using

a Sufficient Decrease Condition”, SIAM Journal
on Optimization,1999

[5] Lagarias, J. C., Reeds, J. A., Wright,M. H., and
Wright, P. E., ”Convergence Properties of the
Nelder–Mead Simplex Method in Low Dimen-
sions”, pp. 112-147, SIAM Journal on Optimiza-
tion, 1998.

[6] Price, C. J., Coope, I. D., Byatt, D., ”A con-
vergent variant of the Nelder-Mead algorithm”,
Journal of Optimization Theory and Applica-
tions, 2002

[7] Shreiner, D., Woo, M., and Neider, J.,
OpenGL Programming Guide: The Official Guide
to Learning OpenGL 6th Edition, Addison-
Wesley Professional, 2007.

[8] Slater, J. C., “Empirical Atomic Radius”, J.
Chem. Phys. 39, p. 3199, 1964.

[9] Weast, R. C., Astle, M. J., and Beyer, W.
H., CRC Handbook of Chemistry and Physics,
CRC Press, 1984.

[10] ”OpenGL API Documentation”, Copy-
right 1997 - 2008, available at
http://www.opengl.org/documentation/

5


