TJHSST Computer Systems Lab Senior
Research Project
An Example of Code Refactoring with Legacy
Code in a Flight Model Software
2007-2008

Eric Shi
Mentor: Peter Stassen
The MITRE Corporation

October 18, 2007

Abstract

As code in software ages, it becomes increasingly important for
it easily to be maintained and understood by programmers who may
work with the code. Modern software may utilize legacy code for the
purpose of supporting specific features. Therefore, refactoring tech-
niques must be applied to the code to ease the process of implementing
future modifications. Refactoring emphasizes improving the design of
an already-written piece of code without changing its function. This
project seeks to apply refactoring techniques to a 14-year-old compo-
nent of the flight model software used at the Air Traffic Managment
Lab at the MITRE Corporation’s Center for Advanced Aviation Sys-
tem Development.

Keywords: design patterns, flight simulation, legacy code, refac-
toring



1 Purpose and Scope of Project

The purpose of this project is to refactor and rework three related modules
(autoflight, mep, and fltsim) in the ”cockpit” component of an existing flight
model program. Refactoring is important in the computer programming
industry because it ensures maintainability and readability in software code.
The software is changed such that its internal structure is improved, but its
function remains the same. The C code used in the modules is 14 years
old, so it needs to be updated to meet today’s programming standards, such
as object-oriented design. This project will develop skills in working with
a mature software system, implementing design patterns, and learning to
refactor software for maintainability. The result of this project is a single
module in C++4, which utilizes object oriented design that meets today’s
programming standards and can be easily maintained in the future.

2 Background and Review of Current Liter-
ature and Research

Refactoring is a technique used in the software development cycle to ensure
code readability by changing the internal structure of a piece of software
without changing its function. There are different types of refactorings, and
some examples are found in Martin Fowler’'s Refactoring: Improving the
Design of Existing Code. Examples of refactorings are: encapsulate field,
extract method, parameterize method, pull up constructor body, push down
method, and substitute algorithm. In 1992, William Opdyke wrote his Ph.D.
thesis titled ”Refactoring Object-Oriented Framework” the first thesis on
refactoring. Design patterns, repeatable solutions to common computer pro-
gramming problems, is another relevant topic in this project. Another goal
of this project is to implement some patterns found in Design Patterns:
Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides.

3 Procedure and Methodology

The code used in this project will be C++ written in a Linux environment.
Some of the code in the modules was written in C, so the code will be



rewritten to utilize features of C+4++, namely object-oriented design. This
project will attempt to unite the mcp, fltsim, and autoflight modules in
the cockpit component of the flight model software to simplify the exchange
of information between the modules. This project can be segmented into
sections that can be worked on in intervals:

1. Literature review

2. Cataloging of relevant variables

3. Merging into a single modules

4. Transition to an object-orientated designs

5. Testing by subject-matter experts

4 Testing and Analysis

The functionality of the product will be tested in an existing simulation
model by subject experts.

5 Expected Results and Benefit to Others

The product is expected to be significantly easier to maintain, updating 14-
year old C code with C++ and utilizing common design patterns in software
engineering. The performance of the module is expected to be about the same
as the original, however. The primary benefit will be to future programmers
who intend to implement addition functions into the module.



